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List of symbols

ag Bohr radius
Ay Thomas-Fermi radius
Velocity of light

Distance between atoms along a crystal axis

Inter-planar distance

Charge of electron

Fraction of survived Ar'”" ions transmitted trough a crystal
Planck’s constant

Planck’s constant divided by 271t
Indexes of resonance coherent excitation
Mass of electron

SIFT IO/
~ 3

(x) Local electron density at position x
n, Number of quantum states of axial channeled ion
n, Number of quantum states of planar channeled ion
q Sommerfeld parameter
u, RMS lattice vibration amplitude in one direction
v Ion velocity
Ug Bohr velocity
Ur Fermi velocity
Uy Ion velocity perpendicular to channel axis or plane
Wi Transition probability from n = 1 to 2 state
X Distance from channel plane
z Ion position parallel to beam direction
Zy Target thickness
A, B Constants in Eq.(2.96)
E, Incident ion energy
E,, Energy of electron escaped from target
E, Sum of energy of escaped electrons per ion passage
E,... Transition energy of ion
F (K) Matrix element for transition from the ground state to n-th excited state
G, (K) Matrix element for transition originating from relativistic correction
G Reciprocal lattice vector
1 Mean ionization energy
K Momentum transfer divided by 7
M, Mass of projectile ion
M, Mass of target atom
M, Transition matrix element from n = 1 to 2 state
N Atomic density of target
0 o1 + 02mc*) = PK*/2m
S Stopping power
T Energy transfer from ion to target atom
T Period of channeling oscillation
) Atomic potential
U.(p) Axial continuum potential
U,(x) Planar continuum potential



Atomic number of projectile ion
Atomic number of target atom

Effective charge of channeled ion

Fine structure constant

Dirac current operator of j-th electron

Contribution to stopping power for channeled ion from close collision
vlc

Thomas-Fermi function

\1-8°

Mean free path for ionization

Path length of channeled ion per Rabi oscillation
Mean free path for radiative decay

Frequency of oscillating electromagnetic field for (k,/) resonance
Distance from crystal string

Standard deviation of energy loss distribution
Standard deviation of energy deposition distribution
Critical angle for axial channeling

Critical angle for planar channeling

Energy loss

Energy deposition

Energy straggling

Frequency for Rabi oscillation



1. Introduction

Channeling effect was first observed in 1960, and many related phenomena, e.g.,
stopping power of channeled ions or an angular distribution of transmitted ions, were
extensively studied [1,2]. The channeling is a unique condition for ions, which has a
small probability of collisions with target atoms, and there are several advantages for
studying phenomena relevant to ion-solid collisions. For instance, the stopping power of
partially stripped ions with frozen-charge state is easily measured because of a small
probability of the charge exchange [3]. Atomic processes, such as radiative electron
capture [4] or dielectronic recombination [5] are clearly observed because of a reduction
of the background originating from bremsstrahlung. Moreover, studies on the impact
parameter dependence of the energy loss and the charge state distribution of channeled
ions can be performed [6,7].

Resonant coherent excitation (RCE) is one of the most interesting phenomena,
which takes place under the channeling condition where the crystal periodic structure
along the ion path is involved. The phenomenon in nuclear levels was predicted by
Okorokov in 1965 [8]. The RCE in atomic levels was first observed by Datz et al.
through a measurement of the charge state distribution of transmitted ions [9]. Fig.1.1
shows one of their results, which is in the case of N® incidence along to Au <111> axis,
and resonance dips for k£ =4, 5, 6 are seen. Fujimoto et al. observed the 6th order RCE
of Ne’* ions through a measurement of de-excitation X-rays (Fig.1.2) [10]. Since then,
many theoretical [11-15] and experimental [16,17] RCE investigations were performed.
For instance, yield of convoy electrons emitted from C** ions channeled along <100>
axis was measured to increase under the RCE condition [18], and the result is shown in
Fig.1.3. Combination of ions and crystal in several RCE experiments and the indexes
for the resonance are listed in Tablel. The previous studies were limited only for low
energy region, because accelerators for ions with relativistic energy were not available.
With low energy ions, only high order RCEs, which have small transition probabilities,
can be observed. Recently, we can obtain a heavy ion beam with relativistic energy by
synchrotron accelerators, e.g., in GSI (Germany). Heavy lon Medical Accelerator in
Chiba (HIMAC) is one of the accelerators which are capable of providing relativistic
heavy ions. A picture of HIMAC is shown in Fig.1.4. lons extracted from the ion source
are first accelerated by a linear accelerator to several MeV/u. After that, they are
introduced to a synchrotron accelerator, and several 100 MeV/u ions are supplied to an
area for experiments. We can obtain C, Ne, Si, Ar, Fe, Kr and Xe ions with the energies
from 100 to 800 MeV/u. This thesis treats investigations at HIMAC on the RCE of 390
MeV/u hydrogen-like Ar ions from 1s to n = 2 states.

Tablel Combinations of ions and crystals in several RCE experiments and indexes of
the resonance. An = 2, 3 means excitations to n = 3 and 4 from the ground state.

Ion Channel axis or plane Indexes for resonance Ref.
C*,N", O™, F" | Au<100>,<110>,<111> k=2,3,4,56 [9]
Ne’* Au<l11> k=6 [10]

(SR Au <100> k=2 [18]
Mg'" Au <100> k=4 [19]
N, Mg'" Au (100), Ni (100) (k) = (2,0) [20]
Si"" Si<111> k=7,8(Mn=2,3) [21]
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Fig.1.1 Survived N°®" fraction as a function of the incident energy for <111> axial
channeling in Au [9].

1. 5f
[ |

= ] !
= 0.5}

L
-0. 3t : : A . ]
73 B0 BS a0 99 100
INCIDENT ENERGY [Me V!

Fig.1.2 Difference of Ne’* K a X-ray intensities normalized to Au M X-rays between
<l11> aligned and random incidence [10]. The resonance energy is 8§7.3 MeV.
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Fig.1.4 Picture of Heavy lon Medical Accelerator in Chiba (HIMAC)



Channeled ions (also random incident ions) in a crystal experience several atomic
processes, ie., excitation, electron loss (ionization) and electron capture, due to
collisions with target atoms. In the case of hydrogen-like ions, a coherent excitation
process from 1s to n = 2 states is added to the above incoherent processes under the
RCE condition. Because a population of n = 2 states increases, both probabilities of
ionization and radiative decay from n = 2 states become larger than that for off-
resonance. Therefore, the RCE can be observed through three kinds of measurements,
charge state of transmitted ions, convoy electrons and de-excitation X-rays. However,
electron capture process, which is important in low energy regions, tends to obscure
information on the initial charge state due to RCE. The advantages of using relativistic
heavy ions for the RCE measurement are enumerated as follows.

1) Charge exchange processes are not so frequent, and the charge state of transmitted
ions keep information on the RCE occurred in a crystal throughout the passage.

2) A thick crystal (several 10 um) such as a totally depleted silicon detector (SSD) can
be adopted as a target, which allows to study an impact parameter dependent RCE by
measurements of the energy deposition of the channeled ion.

3) The first order RCE condition, which has the largest transition amplitude in most
cases, can be realized.

In the present case, an ion path length per Rabi oscillation of coherent processes is
nearly equal to a mean-free-path for ionization from n = 2 states. An ion path length per
channeling oscillation is also comparable to the above two lengths. The crystal field for
the channeled ion is a function of the ion position measured from the channel center.
Accordingly, the energy eigenvalues and wave functions of the bound electron in the
excited states vary at every moment. That is to say, the energy eigenvalue and the wave
function of the bound electron change within mean-free-paths for incoherent ionization
or coherent excitation. The purpose of this thesis is to obtain clear resonance profiles for
the charge state, de-excitation X-rays and convoy electrons with 390 MeV/u Ar'”" ions,
and is to study the atomic process of channeled ions under the RCE condition through
the obtained three kinds of profiles.

In Sec.2.1, several key concepts on the ion-solid interaction related to the present
experiment, such as stopping power and energy straggling, are introduced. The
channeling effect and related phenomena are explained in Sec.2.2. Interpretations on the
RCE, which is the main subject of the present investigation, are given in Sec.2.3.
Results of the channeling experiments with 290 MeV/u C®" ions and 390 MeV/u Ar'”"
ions are reported in Chap.3. Energy depositions of the ions for random incidence and
several channeling conditions were measured. A Monte Carlo simulation for the energy
deposition was also performed, and the results were compared with the measured
energy depositions. Results of the RCE experiment with 390 MeV/u Ar'”" ions are
reported in Chap.4. Impact parameter dependent RCE phenomena were observed
adopting an SSD as a target crystal through measurements of the charge state
distribution of the transmitted ions. Resonance profiles for convoy electrons and de-
excitation X-rays were also obtained. The difference between the resonance profiles for
the charge state and de-excitation X-rays reflects natures of n = 2 states in the crystal
field. Finally, a Monte Carlo simulation for the atomic processes of the channeled ion
under the RCE condition was carried out, and the result supports discussions about
experimentally obtained RCE profiles.



2. Theoretical

2.1. Interaction between ion and solid

2.1.1. Stopping power

When an ion is injected into a material, the ion loses its kinetic energy via
collisions with the target atom. The energy loss per unit length is called “stopping
power”. The stopping power is related to the energy loss through

AE = ffs*(E)dz, @2.1)

where AE is an energy loss of the ion through the target with the thickness z,, and S(E)
is the stopping power for the ion with energy E, which is also a function of the path
length z. In the case that the energy loss is much smaller than the incident energy, the
stopping power can be written as

S=AE/z,. (2.2)
The stopping power can be divided into two parts, “nuclear stopping power” and
“electronic stopping power”, which are originated from collisions with the target nuclei
and the electrons, respectively. When the ion velocity is much lower than the average
velocity of the target electrons, the nuclear stopping power is dominant. For the other
velocity region, the contribution from the nuclear collision is negligibly small, and the
electronic stopping power becomes dominant (see Fig.2.1).

Ly
B
< 01 y
? 7
= He ’N_z
C! e
.."‘.'1 | e 7]
“ .01 S oy
. Cl "
™ Hr iy
I Fm ..-""r )
&
’
0.001 i i Y i i i i .
102 10—+ 10-3 10-2 10—t 1 1 102 TIE I+ 108
ei/my [MeV/amu]

Fig.2.1 Electronic and nuclear stopping powers for several ions in Al target. Dotted
lines indicate the electronic stopping power [22].
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a. Bethe's formula

The electronic stopping power formula for high energy ions was given by Bethe
[23]. He employed the first Born approximation to obtain the collision cross section.
The differential cross section for the collision between a projectile ion and a target atom
is given by

F (K
Aoy =——1 e [Fuw (O] do, (2.3)
muv 0’

where Z, is the atomic number of the projectile, e and m are the charge and mass of
electron, respectively, v is the ion velocity, K is a momentum transfer from the ion to
the target atom. The variable, O, which has the same dimension as energy, and is related
to the momentum transfer through

Q=nK*/2m, (2.4)
where 7 is the Planck’s constant divided by 27T For large-Q region, O corresponds to
the energy transfer from the ion to the target. F,(K) is a matrix element for the

transition of the target atom from the ground state to the n-th excited state, which is
given by

F,(K)= <n|z exp(iK [F,)|0), (2.5)

where r, is a position of the j-th target electron. The factor, 21z e’ / mv’0’, in

Eq.(2.3) is originated in the two body collision between the projectile and the free
electron. On the other hand, F,,(K) expresses that the electron is bound by the target
nucleus. The maximum and the minimum Q are kinematically determined as

Qmax= 2mU2 ’ Qmin= (En_ 0)2/2m U29 (26)
respectively. Using Eq.(2.3), the stopping power is written as

S = NZ(E” E)I 2‘2"22 F”°(K)| do, (2.7)

where N is the atomic den51ty of the target. To proceed with the calculation of Eq.(2.7),

the integral is divided into two parts, i.e., Q,,,, <O < O, and O, < 0 < Q,..., Where
K n’
- 0o , 2.8
O 2m 2mry 25)

and a value larger than the mean orbital radius of the target electron is selected as the
value of 7.

For O < Q,, i.e., the distant collision, the dipole approximation, exp(iK [F)
~1+iK [¥, can be applied. The contribution to the stopping power from the region of
Qmin<Q<Q0 iS given by

_ 0 4nz} e’ 2dQ
So<q, = Nz (£, — E, )L hzvz |er/|0>‘ Z’ (2.9)
_ 2INZ ! Z e’ In 2mv’Q, ’ (2.10)

2 2

muv 1

where Z, is the atomic number of the target, / is the mean ionization energy, which is
defined by

11



2m

Ing = <n|zj_rj|0>r(E” —E,)In(E, - E,). @.11)

Here, the sum rule for the dipole oscillator strength is adopted for derivation of
Eq.(2.10) from Eq.(2.9).
On the other hand, for 0, < O < Q,..., i.e. the close collision, the contribution to the

stopping power from this range is calculated to be
o 2T d
o =N TDLLS (B, = Enl 3 etk )]

2
:27'lNZl Zze ln2mv , (2.13)

muv’ Oy
using the Thomas-Reiche-Khun's sum rule. Summing Eq.(2.10) and Eq.(2.13), the
stopping power, S, is derived as

2 4 2
§ = NZizoe ), 2y (2.14)
muv 1
The value, Q,, introduced in this calculation is canceled in the sum. Eq.(2.14) is called
“non-relativistic Bethe’s formula”.
In the case of electron incidence, the two-body collision between electrons is
adopted for the close collision. The value of 0, corresponding to the maximum energy

transfer is given by Q,

O 2.12)

= mv’/2. As a result, the stopping power for electron is given

max

by
4 2
§ = NZae g, mu” (2.15)
muv 1
For relativistic ions, the Bethe’s formula, Eq(2.14), is extended to
4TINZ ! Z,e'
S = #LO, (2.16)

2my” -B*,B=vicand y= 1/\/1 B’ [24,25]. A derivation of the

relativistic Bethe’s formula is given in Appendix1. Contributions from the distant and
the close collisions, Eqs (2.10) and (2.13), are modified to

where L, =In———

27‘lNZ Z,e' 2mv O
Soca, = AL B IZQ‘)V B0 (2.17)
and
2 4 2.,2
Sos0, = 2TNZ| 2226 nzmv 4 _ﬁzg (2.18)
S muv Qo

respectively. It is worth to note that the relativistic correction term of Iny*-f? in
Eq.(2.16) comes from both the distant and the close collisions, and these contributions
are equal.

b. Bloch correction
The Bethe’s formula is known to reproduce experimental results for light ions with

high velocities which satisfy Z,e*/hv << 1. For Z,e’/hv >> 1, the Bohr’s classical
formula [26] shows a good agreement with experimental results. Bloch indicated that

12



the exact scattering amplitude (but non-relativistic) should be adopted for collisions
with small impact parameter, and derived a correction term

ALy =@1)—Rey(1+iZ,a/P) (2.19)
to bridge the gap between the Bethe’s quantum mechanical and Bohr’s classical
formulas. Here, ¥ is the digamma function, o is the fine structure constant ([11/137).
This term is mainly originated in the close collision with small momentum transfer, i.e.
with small scattering angle [27], which is important for low velocity ions. For Z,e*/hv
<< 1, ALy, 1s approximated as

ALy, 0-1202(z,a/B), (2.20)
which is called “Z,* correction term”.

c. Barkas effect

Barkas et al. discovered that the range of positively charged pion is shorter than
that of negatively charged pion [28]. The effect that the stopping power depends on the
sign of Z, is called “Barkas effect”. This can be explained by the polarization of the
target atom. For negatively charged ions, target electrons are repelled from the projectile
ion, and the collision probability is reduced. As a result, the energy loss of negatively
charged ion becomes smaller than that of positively charged ion. Several theoretical
formulas for Z,> correction term were classically derived [29,30]. A simple empirical
formula of the correction term, AL, for 1< v/Z,"?v, <10 is given by

0.95-0.28In[(v/ 2} vy) + 2]%7
Barkas — [ Z]/z Z[/z 2 ILO ’

W 2 (U/ 1 7Us) W
where vy is the Bohr velocity [31]. For ions with the velocity much higher than that of
the target electron, this effect is not important.

AL

(2.21)

,_.
=
-
-1
ﬂ |
-
|

Fig.2.2 Shell corrections for Al and Au targets as a function of x (= v? / vaZ,)[33].
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d. Shell correction
The Born approximation gets less reliable as the binding energy of the electron in
question is larger. Correction terms to take into account the binding effect have been

proposed, which is
C=CHC+Cy s (2.22)
where Cy, C;, Cy, - are the contributions from K, L, M, - shells to the correction,
respectively. The values of Cy, C;, C,, - were given using several theories [32,33].
Shell corrections for Ai and Au targets as a function of x (= v’ / vaZ, ) are shown in

Fig.2.2.

e. Mott correction
For high-Z ions with relativistic energy, the first Born approximation with
relativistic correction is no longer applicable. As for the close collision, the exact
relativistic two body scattering cross section, the Mott cross section [34], should be
adopted instead of the first Born approximation (Eq.(A.14)) [29], which is given by
A0 = K202 (1= BH)|F[ ese? (8/2) +[GI* see? 0/ )02 (2.23)
F=F,+F,
) = lr(l—_lq)exp iq lnsinz(Q/Z)],
2 (1+iq)

EzéZh@+m+nmJ«Na@mm,

G = GO + le
G, = —igcot’(6/2)F,,

G = é Z [ksz —(k+ l)sz+1](_l)kPk (cosB),

_e™ T(k-ig) _ ™ T(p, ~iq)

k+iq T (k+iq) p,+ig [ (p, +ig)’

p’ =k = (Bgy,
where A is the de Broglie wave length of the electron divided by 217 [ is the gamma
function, P, is the Legendre polynomial of order k, and ¢ = Z,e’/hv, is the Sommerfeld
parameter. Lindhard and Serensen also derived the relativistic stopping power formula
for heavy ions using a transport cross section employing a partial wave expansion
method, and indicated that the deviation from the Bethe’s formula converges to the
Bloch correction in the non-relativistic limit [35]. Expanding D, in Eq.(2.22) to the first
order of ¢, we obtain

k

Zle'
dog = ! 1-B%sin’(6/2) + Z,aBsin(6/2)(1 - sin(6/2)) [dQ . (2.24
. 4mzv4y28in4(6/2)[ B sin’ (6/2) + 72,aBsin(8) 2)(1 ~sin(8/2) Q2 . (2.24)
Using the relation between the energy transfer, 7, and the scattering angle 6,

T =2mv’y*sin*(0/2) =T

o 510 (6/2), (2.25)
Eq.(2.24) is transformed to

14



2 4
do, = 2TZZ;2 Q ﬁz_+nzaﬁ%§ %g% (2.26)

Eq.(2.26) is 1dentlcal to the cross section derlved with the second Born approximation.

Adopting Eq.(2.26) as the collision cross section, the close collision part of the stopping
power is given by,
OII]RX

Sos0, = NZZI Tdog,, (2.27)

o

— 27WZIZZZe4 Sn Qmax

mv* 0 Qo
The first two terms of Eq.(2.28) are equal to the close collision part of the relativistic
Bethe’s formula, and the deviation from the relativistic Bethe’s formula,
_TZ,aB

Mott — ’
2

- B +1ZaBn) (2.28)
U

AL (2.29)

is called the “linear Mott correction term”. The second Born and the exact Mott
differential cross sections divided by the first Born result are shown in Fig.2.3. For Z, =
18 with the energy of 390 MeV/u, the second Born calculation is seen to be a good
approximation, however it deviates considerably from the exact Mott result for Z, = 82.
Experimentally, stopping powers were measured for O, Ar, Kr and Xe in the energy
range from 700 to 1000 MeV/u, and significant deviations from the relativistic Bethe’s
formula for high-Z ions were observed (see Fig.2.4) [36].

f. Density effect
At very high energy region, a screening effect by target electrons becomes

important, and the energy transfer from the ion to an electron is less effective for distant
collisions. This effect depends on the target density, and is called “density effect”.
Sternheimer et al. calculated the density effect, &), for various targets, and derived a
simple formula, which is

0(X)=4.6052X +a(X, - X)"+b (X,<X<X), (2.30)

0(X)=4.6052X +b (X>X)), (2.31)
where X = log,,(BY), X, Xi, a, m and b are parameters which depend on a target [37].

In summary, the relativistic Bethe’s formula with several correction terms is
written as

VAV

Cc o(p)O
S= - %0 +ALBloch +A LBarkas +ALMott - _(—B)

zZ, 2
A contribution of AL, is [.8 percent of L, for 390 MeV/u Ar ion in Si traget, and
those of the other correction terms, ALy, ALg,ass C/Z,, and & B)/2 are [0.5, [0.3, [D.3,

and [0.4 percent of L, and these four terms are neglected in the present thesis.

(2.32)
mv

15
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2.1.2. Energy straggling
a. Gaussian distribution

An ion penetrating a target looses its kinetic energy via collisions with the target
atoms, and the energy loss fluctuates statistically around the average value. This
fluctuation of energy loss is called “energy straggling”. For a thick target, which
satisfies

k=2 >>1, (2.33)

max

where
2TNZ [} Z,e'z,
g=I200 5
muv
The energy fluctuation mainly originates from a large number of collisions with small
energy transfer, because the collision with large energy transfer is infrequent. In this
case, the energy loss distribution becomes the Gaussian shape. Bohr calculated the
energy straggling, A&, assuming that target electrons are free, and derived a formula,
AE = Nz, :“‘“"Tzda, (2.35)
=4TNZ; Z,e'z,, (2.36)
which is called Bohr’s formula, where 7}, is the minimum energy transfer in the case that
the binding effect of target electrons can be neglected, and the Rutherford differential
cross section is assumed as the collision cross section, do. It is noted that the energy
straggling is independent of the projectile energy, and is proportional to the square root
of the target thickness. Adopting the relativistic collision cross section with the first
Born approximation (Eq.(A.14)), Bohr’s formula is extended to

(2.34)

) ) 1_ 2 2
Ae” :47'1NZ{Zze4zo%. (2.37)
Fano took the binding effect of target electrons into account [25], and the result is
given by,

2
- R2 <|Z/‘v/|> ZE
A£2=47'INZsze4ZOEl B 52+3 2 0 1p 20 1 (2.38)
EI—B 3 Zw 1 E

where < > , Indicates the mean value in the ground state. When the ion velocity is

higher, the second term in Eq.(2.38) is less important, and Eq.(2.38) converges to the
relativistic Borhr’s formula.

For high-Z ions with relativistic energy, the exact Mott cross section should be
adopted, and Eq.(2.35) is modified to

Ae> =Nz, [ T’do (2.39)
0 7 Mott - .

Scheidenberger et al. measured the energy straggling for O, Xe, Au and U ions in the
energy range from 700 to 1000 MeV/u [38]. Calculations with Eq.(2.39) reproduced the
experimental results much better than the relativistic Bohr’s formula (see Fig.2.5).
Under the present experimental conditions, which are 290 MeV/u C ion and 390
MeV/u Ar ion, the relativistic Bohr’s formula gives a good agreement with the
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experimental result, and is adopted in this thesis.

b. Landau distribution
In the case of the thin target, which satisfies,

K <<1, (2.40)
the maximum energy transfer, 7, , is larger than the average energy loss, and a small
number of collisions with large energy transfer has a significant effect for the energy
fluctuation, consequently, the energy loss distribution has a tail to the higher energy side.
The energy loss distribution for kK <<I was given by

fi(z,,4E) = %‘[F:xp(— 18/2)cos(tInt + At)dt, (2.41)
which is called “Landau distribution”, where

A=(AE - AE)[E -1+y, —Ink - B2, (2.42)
and ) = 0.577-- is the Euler’s constant [39,40].
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Fig.2.5 Ratio of measured energy straggling to the theoretical predictions of the
relativistic Bohr’s formula for several projectile-target combinations. The dashed and
dotted lines are the results with the Mott cross section for S = 0.81 and 0.87,
respectively [38].
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2.1.3. Angular straggling
Ions transmitted through a material have finite angular spread due to multiple
elastic collisions with the target nuclei, which is called “angular straggling”. Collisions
with target electrons scarcely contribute to the angular straggling because the mass of
electron is much smaller than that of the ion. The mean square angle for single
scattering is deﬁned by
w dO

92 I 92 d.Q/I —d_Q (2.43)

where 6,, and Gmm are the maximum and the minimum scattering angles, which are
determined from the minimum and maximum impact parameters comparable to radii of
target nucleus and atom, respectively. Considering the scattering of a particle (mass M,,
momentum p and charge Z,e) with target atom (mass M, and charge Z,e), the differential

cross section, do/d €, is given by,
do  Zl!Z;e' [cos9+{l (M,/M,)* sin 9} ]
dQ 4p’v’sin'(0/2)  [1-(a,/M,) sin?6)]"

Further considering that the small angle scattering is dominant, i.e., sinf [0 << 1,
Eq.(2.44) is written as

do D4ZﬁZ§e4

(2.44)

) 2.45
aQ  p'v’e’ (245)
and Eq.(2.43) results in
<92> 87'2222 e J- d@
p’vio
2 4
S Zeet ) O (2.46)

pzvzo- emin
The angular straggling of the transmitted ions through the target with the thickness z; is
obtained as
(©%)=n(67) = N0 1,(67)
272 4
_ 877NZ]2222e 20 1 0o , (2.47)
p v emjn

where 7 is the mean collision number during the passage through the target.

2.1.4. Range

The incident ion loses its kinetic energy, and finally stops in the target when the
target is thick enough. The path length to stop along the incident direction is called
“range”, which is given by

R(E,)) = I cos9 dE , (2.48)

where £ is the 1n(:1dent energy. Fig.2.6a shows the transmitted fraction of 110 MeV
protons through Cu target. The range is experimentally defined as the target thickness
where the transmitted fraction is 50 percent.

In the case of electrons, it is difficult to define the range, because the electron
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trajectory extremely deviates from a straight line. Fig.2.6b shows the transmitted
fraction of electrons with several energies through Al target. The transmitted fraction is
a slowly decreasing function of thickness, and has no clear cut length. The thickness
obtained by extraporating the curve (dotted line in Fig.2.6b) is often used, which is
called “extraporated range”. Several empirical formula of the extraporated range are
proposed [41,42]. Tanabe et al. proposed an analytical formula for 0.3 keV-30 MeV
electrons and for targets with Z, = 6 — 92, which is given by

gn(l-l'aon)_ a;E, U

R (E)=a ) 2.49
e e 24
They also gave the inverse relation formula for convenience, which is
0 0
EO :cl |Expgaex 2 +C30-E/cl %_ID (250)
E E 1 + C4Re; E E

where the parameter g, and ¢, (i=1-5) are simple functions of Z, [41].
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Fig.2.6 Transmitted fraction of (a)l10 MeV proton in Cu target, and (b) electrons
with several energies in Al target as a function of the target thickness. Numbers in
(b) indicate incident electron energy in MeV [43,44].
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2.1.5. Electron loss and capture

Ions passing through a target have a possibility of charge exchange, i.e., electron
loss and electron capture, due to collisions with the target atoms. At high energies,
ionization cross section, 0, is approximated as

1

o =2,0+7Z;0_, 2.51)
i 2% e 2% p

where 0, and O, are the electron and proton impact ionization cross sections,
respectively. The first term represents the electron impact ionization (EII) and the
second one is the nuclear impact ionization (NII). The values of o, and g, were
calculated using the plane wave Born approximation [45-48]. They were also
determined by measurements of the one-electron loss cross section for 405 MeV/u U**
and 100 and 380 MeV/u Au™*" in H, and He, and can be regarded as g, =g, [49].
On the other hand, the total electron capture cross section, g, is given by
O¢ =Omec T ORrec» (2.52)

where Oy and Oy are the cross sections for mechanical electron capture (MEC) and
radiative electron capture (REC), respectively. A target electron can be transferred to the
projectile ion when the momentum of the target electron matches to that of the bound
electron of the projectile, i.e.,

p=p, tmy,, (2.53)
where p,and p, are momenta of target electron and bound electron, respectively, and v,
is the projectile velocity. The cross section of MEC was calculated by the Oppenheimer-
Brinkman-Kramers (OBK) approximation [50,51]. The REC is the electron capture
process which accompanies the photon emission to compensate a momentum gap
between the target and the projectile electrons [52]. The REC process is more important
than the MEC process for high energy ions [53].

Charge exchange processes modify the stopping power. Kim and Cheng considered
the electronic structure of the projectile ions as well as the target atom, and extended the
Bethe’s stopping power formula for partially stripped ions [54]. In the formula, the
projectile charge, Z,, and the mean ionization energy, /, are replaced as the effective
charge, Z; and the effective mean ionization energy, /g, respectively. Cabrera-Trujillo
et al. gave an analytical stopping power formula, which has two components related to
the electronic structures of the projectile and the target atom, with a consideration of the
velocity dependent number of bound electrons [55].

The energy straggling is also modified by the charge exchange effect. Sigmund
derived an additional term of the energy straggling formula in the presence of charge
exchange processes [56].

2.1.6. Convoy electrons

Velocity (energy) spectra of electrons produced by the ion-solid collision have a
‘cusp’ shaped peak at the ion velocity, and electrons in the peak are called “convoy
electrons”. The convoy electrons come from processes of electron loss to continuum
(ELC) and electron capture to continuum (ECC). Generally, the velocity spectrum for
the ELC electrons is nearly symmetric, and that for the ECC electrons is skewed toward
the lower velocity side, because the electrons feel the force to the opposite direction to
the ion velocity both before and after the collision. When partially stripped (the charge
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is lower than the equilibrium charge) ions are used, the ELC process is dominant at high
energy region, because O; is much larger than o,. Experimental studies of convoy
electrons were extensively performed so far [57]. The angular distributions of the ELC
convoy electrons with 36 MeV/u Ar ions were measured [58], and the results indicated
that the transverse velocity of convoy electron increases as the target thickness increases.
The cusp shape of the ELC convoy electrons was theoretically studied by Burgdorfer et
al. [59]. The calculated energy spectra for ELC of He" at the acceptance angle for
detection, 6, = 3 x 107 rad., are shown in Fig.2.7. The cusp shapes of ELC from 2s and
2p, are narrower than that from 1s (Fig.2.7a), because the momentum distribution of 2s
and 2p, in the direction of the projectile velocity is sharper than that of 1s. In the case of
ELC convoy electrons from 2p, state, the spectrum becomes ‘anti-cusp’ shape
(Fig.2.7b). Experimentally, the cusp shape for hydrogen-like Ar ions with a relativistic
energy on C-foil found to be sharper as the increase of the foil thickness from 25 to
(500 pg/cm’® [60]. This unfamiliar result is due to the increase of the ionization from
excited states as the increase of the foil thickness, and has never observed in the

experiment for lower energy ions [61]
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Fig.2.7 (a) Normalized singly differential cross section, do/dv, for ELC of He" from
1s, 2s and 2p states on H at the projectile velocity of 10 a.u. and 6, = 3 x 10 rad.,
and (b) da/dv, for ELC of He" from 2p, states on H (solid line), He (dashed line) and
Ar (dot-dashed line) at the projectile velocity of 4 a.u. and 6, =3 x 107 rad. [59].

23



2.2. Channeling effect

2.2.1. Axial channeling and planar channeling

When ions are injected into a crystal parallel to the crystal axis or plane, the ions
receive only small angle scatterings, and pass through the space where the target nuclei
do not exist along the axis (axial channel) or the plane (planar channel) as shown in
Fig.2.8. This effect is called “channeling”, and was predicted by Stark in 1912. The
channeling effect was first observed in 1960. Rol et al. reported that the sputtering yield
for ion bombardment to a single crystal depends on the crystal orientation [62]. In the
same year, Davies et al. found abnormally long ranges of heavy ions in polycrystalline
aluminum and tungsten [63]. Since then, many experimental and theoretical studies on
the channeling effect have been performed [1,2,64].

To describe the motion of channeled ions, the axial and the planar potentials, which
are averaged along the axis and the plane, respectively, are useful. The axial potential by
a single string is given by

s) :l 7 .
U’ (p) dLV(r)d : (2.54)

where d is the distance between atoms along the axis, r is the position of an ion from a
target nucleus, z is a component of r in the direction of the ion velocity, and p* = 7* — 2°,
and V(r) is an atomic potential at position r. The potential for axial channeled ions is
expressed as

U= U"@-p), (2.55)

where the sum is taken for all strings surrounding the axial channel.
For the planar channeling case, the planar potential by a single plane is given by

U (x) = 2mVd,, J:F/(r) odp, (2.56)

where d, is the inter-planar distance, x is a components of r perpendicular to the
channeling plane, and p* = 7> — x°. The potential for planar channeled ions is similarly
expressed as

U,(x)= Z U (x=nd), (2.57)
where the sum is taken for all planes.
d
<+“—>

Fig.2.8 Trajectory of channeled particle in a crystal.
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The target nuclei are screened by the target electrons, and a screened Coulomb
potential should be adopted as the atomic potential. Several different types of screened
Coulomb potentials have been proposed, which are explained below.

a. Thomas-Fermi potential
When the number of bound electrons is large, the electrons can be treated as an
ensemble of fermions. Assuming that the electrons occupy the momentum space from 0
to p,, the electron density in the real space is given by

4779 (r) _ po(r)
n(r)y=2——-- / °2h3 , (2.58)
where the factor 2 comes from the duality of the spin up and down states. The total
energy of the electron,

E, pO() —eq(r), (2.59)

must be constant, where @) is the electrostatic potential. By solving the Poisson
equation with Eqgs.(2.58) and (2.59), the potential for the ion with the charge, Ze,
screened by the electrons is derived as

1zze

V(r) = Z,e@(r) = X(r/ar). (2.60)
where X(x) is called the Thomas-Fermi function, which satisfies
2 32
X0 X0 61)
dx x"?

and a,, =0.885Z," a, is called the Thomas-Fermi radius, where a; is the Bohr radius.

b. Moli¢re potential
The Thomas-Fermi function is fitted with a sum of exponential functions,

2 3
0 :ZZ—eZa xp(- B are). 2.62)

where a, = (0.35, 0.55, 0.1), B,= (0.3, 1.2, 6.0). Eq.(2.62) is called “Moliére potential”.

c. Lindhard potential
Lindhard also proposed a simple formula approximating the Thomas-Fermi

functionas X(x)=1- x/ NVC? +x? , which resulted in
2
v(r =228 % —_rlen D (2.63)

r JC +(rfay ) P

where C* [B is a constant. The Lindhard potential is a good approximation of the
Thomas-Fermi potential especially around » = 2a;, and is suitable for describing a
channeling motion, because the distance between a channeled ion and a target nucleus is
of the order of a,;.

The deviations of the Moliére and the Lindhard potentials from the Thomas-Fermi
potential are shown in Fig.2.9. The Moliére potential agrees with the Tomas-Fermi
potential comparatively for wide ranges. In the present calculation, the Moliére potential
was adopted to evaluate the planar potential, which is given by
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Bndp
a -
U, (x) = 41Z,Z,e’ Nd ar; Z—"e 2are coshE@Ey (2.64)
n= :Bn aTF

where x is a distance from the channel center. Moreover, considering a fluctuation of the
crystal lattice due to the thermal vibration, U,(x) was modified to

N _Lm e MU, (x+u)du, (2.65)
where u, is a one-dimensional amplitude of the thermal lattice vibration. Typical axial
and planar potentials are shown in Fig.2.10. The axial potential has a saddle point
between neighboring channels, and axial channeled ions have a possibility of moving to
a next channel. When a transverse energy of the channeled ion, which is defined by
Eq.(2.66), is small enough, the ion travels in a single channel, which is called “hyper
channeling”. On the other hand, planar channeled ions always move in a single channel,
because a planar potential has no saddle point.

Uy(x) =

1.6

Moliere
Lindard

14

Ratio

0.6 |

0.4
0 5 rlag 10

Fig.2.9 Ratios of the Moliere and the Lindhard potentials to the Thomas-Fermi
potential.
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1.80A

Fig.2.10a Axial potential for He ion in Cu <100> axial channel. Numbers indicate
the potential height in eV.
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Fig.2.10b Planar potential for proton in Si (110) planar channel. The broken line is a
parabolic potential.
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2.2.2. Ciritical angles of channeling

Incident ions can be channeled only when the incident angle from the axis or plane
is smaller than a certain angle. The maximum angle for channeling is called the “critical
angle”. The critical angle is estimated as follows. Considerations of two- and one-
dimensional motions perpendicular to the beam direction are necessary for axial and
planar channeling cases, respectively. The transverse energies of the ions with energy, E,
for axial and planar channeling cases are given by
E=U(p) + Esin*y OU,(p) + EYr, (2.66)
E=U(x)+ Esin’ OU,(x) + EY, (2.67)
where ¥ is an angle between the ion velocity and the channel axis or plane, and U,(p)
and U,(x) are defined to be 0 at the channel center. Assuming that the ions are injected
at the channel center with the critical angle ,, relations
EY; = U, (Puin); (2.68)
EY; = U (x),0 (2.69)
are satisfied, because the transverse energy, £, is constant, where p,,, and x,,, are the
closest distances from the channel axis and plane, respectively. Adopting the Lindhard
potential, the axial and planar potentials, U,”(p) and U,*(x), are given by

© 2
Ul (p) = %L V(r)dz :Z‘ZTzeln[(CaTF / p)? +1],D ooooo (2.70)

X’ +Clay —x|, (2.71)

are considered to be [k, so that Eqgs.(2.68) and (2.69) are

Uy (x) =2mVd, [ V(r)pdp = 27NZ,Z,¢’d,

respectively. p,,, and x

min

written as
27 7, ¢’
EY = UM pyy) ~ =27 = EQ, (2.72)
E'l‘)uc2 = Up(S)(xmin) |:]2’.'-212262]\[dpaTF = Ewpza (273)

Therefore, the critical angle, ., for axial and planar channelings are represented by ¢,
and ,, which are obtained as

27 7.¢e*
wzl—ze,m oooooo 0oog (2.74)
! Ed

B \/ 2TNZ, Z,¢*d ay,
p - .

B (2.75)

For relativistic energy region, Eqs.(2.74) and (2.75) are modified to

2
W, = 1/4tzli , (2.76)
pud

_ \/47‘!NZ]ZzezdpaTF
=

pv
by replacing E with pv/2, where p and v are the momentum and the velocity of the
incident ion, respectively.

, (2.77)
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2.2.3. Stopping power for channeled ion

As explained in Sec.2.1.1, the stopping power can be divided into two components,
i.e., those originated from distant and close collisions with target electrons. Under the
channeling condition, the probability of the close collision is reduced compared with
that for the random incidence, because the channeled ions pass through a space where
the local electron density is much lower than the mean electron density. As a result, the
stopping power (i.e. energy loss) for the channeled ions becomes considerably smaller
than that for the random incidence.

Lindhard proposed a simple formula for the stopping power for the channeled ion,
which is given by
n,(ryd
ZNH
where S, is the stopping power for random incident ions, n,(r) is the local electron
density at position r, and @, is a parameter between 1/2 and 1 [64]. The first term of
Eq.(2.78) expresses the contributions from the distant collision, which is proportional to
the mean electron density. The second term corresponds to the contribution from the
close collision, which is proportional to the local electron density. The value of a, is
determined by the experimental result, and Lindhard argued that a, becomes closer to
1/2 for larger velocity, and Eq.(2.78) results in

5, (r) =5, 22N 1)
2Z,N

Eq.(2.79) means that the distant collision part is a half of the total stopping power for
random incidence, which is called “equipartition rule” [65]. The equipartition rule was
confirmed by experiments on the energy loss of best channeled protons in silicon, while
the deviation from Eq.(2.79) was reported as for the energy loss of best channeled
protons in germanium [66,67], which are listed on Table2. Appleton et al. assumed that
only valence electrons contribute to the stopping power of the “best channeled ion”,
which passes straight in the channel center. The formula is expressed as

S(r)=S. %1 —a,)+a, (2.78)
0

(2.79)

2 4

s=NZie g 1Yoz, 2 (2.80)
muv Uy hw,

where NZ , and NZ, are the effective electron densities for plasmon and single-particle

excitations, respectively, v; is the Fermi velocity, and @, is the plasma frequency. They
adopted the formula to the case for a 3 MeV proton channeled in a Si (111) plane. The
value of Z, .= 3.8 was obtained from the experiment assuming Z , = 4 for Si. [67].
Esbensen and Golovchenko attributed the deviation from Eq.(2.79) to the crystal
lattice structure [68]. The stopping power formula as a function of the impact parameter

b is given by

2 4 2

O
S(b) = W# 322 +20)n 2"+ cb)g (2.81)

mbv ] ]

where
_ iGIB 2ml
C(b) = ; e'“® p(@) lnﬁ ) (2.82)
Z

NZ(b) is the local electron density at position b, and G is the reciprocal lattice vector,
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and p(G) is the Fourier transform of the electron density in the target crystal. Eq.(2.81)
was extended to the relativistic energy region as

S(b) = 2"7’:2 ﬁz +Z(b)E 2mv’y B% 6+C(b)D (2.83)

where O is the correction term for the density effect. The formula shows a good
agreement for the channeled particles along the <110> axial and the {111}, {110} and
{100} planar directions in Si and Ge crystals (see Fig.2.11) [69].

Eq.(2.80) can be adopted only for best channeled ions, because an effect of core
electrons becomes important for the stopping power of channeled ions with large
oscillation amplitude. Eqgs.(2.81) and (2.83) are the formulas for channeled ions with
fixed impact parameter, i.e., it is realistically limited for the best channeled ions. The
Lindhard formula, Eq.(2.78), is applicable for evaluating the energy loss of channeled
ions with various trajectories.

As for the planar channeling, the relation between the stopping power of channeled
ions and the oscillation frequency was investigated [70]. A trajectory of the planar
channeled ion is different from the sinusoidal curve because of the anharmonicity of the
potential. The slope of the planar potential is steeper than the parabolic potential near
the channel wall as shown in Fig.2.10b. Accordingly, the stopping power depends not
only on the oscillation amplitude but also on the oscillation frequency, and was
measured to be proportional to the oscillation frequency [71,72].

Table2 Measured energy loss, AE,,,,, of {111} planar channeled
proton with several energies, £, and predictions by equipartition rule,

AE, ., for silicon and germanium targets [67].

Crystal E,(MeV) AE,,,, MeV) | AE,,;,(MeV)

Silicon 2.81 0.33 0.35

4.83 0.22 0.24

8.58 0.14 0.15

11.00 0.12 0.12

Germanium 5.00 0.22 0.32

7.00 0.17 0.26

9.00 0.15 0.22

11.00 0.12 0.18
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Fig.2.11 Comparison between theory, Eq.(2.83), and experimental results for
three planar channelings and random incidence [69]. Stopping power is
plotted as a function of p/M,c = By.
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2.2.4. Charge state of transmitted ions under channeling condition

Under the channeling condition, the charge exchange processes are also suppressed,
and a condition of the “frozen-charge state”, which means that the ion maintains the
initial charge state throughout the passage, can be easily achieved. Datz et al. measured
the stopping power of {111} planar channeled ions in Au crystal, which have not
changed the charge state throughout the passage. The hydrogen-like and helium-like
ions of Z, =5 — 9 with the energies of 2 MeV/u were used in their experiment [73].

A charge state distribution of channeled ions transmitted through a crystal is quite
different from that for random incidence, because of the impact parameter (transverse
energy) dependence of the charge exchange probability. Fig.2.12 shows charge state
distributions of 300 MeV/u U”" ions after transmission through 120 pm thick Si crystal,
which were measured under <110> axial channeling and random conditions. [74]. For
random incidence, the charge state distribution has a peak at ¢, = 90, however, the peak
is shifted to ¢, 76 for the <110> axial channeling case, where ¢, is the exit charge
state. A peak at g,,, = 90 under the channeling condition corresponds to non-channeled
or de-channeled ions. The broad distribution for the channeling case is due to the
transverse energy (E,) dependence of ¢, distribution, i.e., g, for channeled ions with a
large oscillation amplitude (large £) becomes to [P0, although that for channeled ions
near the channel center (small £) is [173.
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Fig.2.12 Charge state distributions of 300 MeV/u U”" ions transmitted through 120
pMm Si crystal. Closed circles and triangles are experimental results, and Solid lines
are results of Monte Carlo simulation [74].
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2.3. Resonant coherent excitation

2.3.1. Resonant coherent excitation of channeled ion

Channeled ions have a chance to be excited by the oscillating electromagnetic field
caused by the periodic crystal potential, when one of the internal energy differences of
the ion coincides with the photon energy of the corresponding field frequency. This
effect was predicted by Okorokov in 1965 [8], and is called “Okorokov effect” or
“resonant coherent excitation (RCE)”. The original prediction by Okorokov is the RCE
in nuclear levels, but the channeled ions can be coherently excited also in atomic levels.
For the atomic RCE, the excited ions have a larger ionization probability compared with
the ions in the ground state. The first observation of RCE in atomic levels was achieved
with hydrogen-like and helium-like light ions of Z =5 to 9 through the measurement of
the charge state distribution of the transmitted ions [9]. The observation of RCE by
another decay channel of the excited state, i.e., de-excitation with the X-ray emission,
was also made using the ions with smaller orbital radii of excited electrons [10,19]. The
RCE process was also investigated theoretically [11,12], and the main purpose of recent
works is to evaluate the coupled treatment of coherent process with incoherent
(ionization, excitation and de-excitation) processes [13-15].

When the ion is channeled along an axis with its velocity v, the frequency of the
periodic perturbation on the ion by the crystal potential is given by v = yw/d, where

y = 1/ J1-(w/c)’, and d is the distance between atoms along the axis (Fig.2.8). If the

internal energy difference of the ion, E,,, matches nhv, the RCE occurs, ie., the
condition of RCE for axial channeling is given by

T[001]

Ion

. 1,4)

Fig.2.13 Arrangement of atomic strings on Si (250) plane. The solid and dotted lines
indicate (1,1) and (1,4) strings, respectively.
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Eirans = nhdvy : (l’l = 15253"") (284)

Under planar channeling conditions also, the RCE occurs by feeling the periodic
arrangement of atomic strings lying on the channeling plane as shown in Fig.2.13. The
RCE condition for planar channeling cases can be derived as follows.

The primitive translation vectors a,, a, are defined so that a, and a, are parallel to
the channel plane. In the case of Si crystal, sets of a, and a, can be written as

a, =[110]a/2, a, =[001]a  for (250) plane,
a, =[110]a/2, a, = [liO]a/Z for (004) plane, (2.85)
a, =[110]a/2, a, :[iIZ]a/Z for (111) plane,
where a is the lattice constant. The third primitive translation vector, a,, is taken to a

lattice point on the neighboring plane. The reciprocal lattice vector is given by
G' = kb, +Ib, + mb,

=G'(k,l)+ mby, (2.86)
where
bia =bya,=bya; =1,
b,-a,=b,-a,=b,-a,=b,-a;=b,-a, =b;a,=0. (2.87)

The inter-planar distance d, is given by 1/|b,|. Hereafter, z-axis and x-axis are taken to
be parallel to the ion velocity and perpendicular to the channel plane, respectively. The
position of the ion moving with the velocity, v, in the laboratory frame is given by

R)=R +v' =X, Y, ut'). (2.88)
Using Eqs.(2.85)-(2.88), the potential which the ion feels at position R(#") is expressed
as

PR = Z @ expl-iG' R(t")]

= Z Z Diim exp[— i(G'(k,l) + mb3)[(RD + w')]

= Z @, (X)exp[-271(G' (k,[) TR, +vr"))], (2.89)
where
@ (=@,,) 1s the Fourier component of the potential, and
@, (X) = z Gy Xp(= 2TEmX/d ). (2.90)
It is noted that the Fourier component of (k,/) = (0,0), which is
@y (X) = Z @, exp(=2mmX/d,), (2.91)

corresponds to the planar potential averaged along the plane.
The ion velocity is written as
v = (v/sin @)[e, sin(@ —0) + e, sin 6], (2.92)
where © and 0 are angles between a, and a, and between v and a,, respectively, e, and
e, are unit vectors along a, and a,. Therefore, the frequency for the ion to pass across
the (k,/) atomic strings in the laboratory frame is
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a/k

Fig.2.14 (k,/) atomic strings (dotted lines) which the ion with the velocity v passes.
Angles between a, and a, and between v and a, are represented as @ and 6, respectively.

vik)=G'(k]) v
= (v/sin@)[ksin(© - 6)/lay| +5in6/Ja]. (2.93)
The (k,/) atomic strings are parallel to a line, which intersects a, and a, at a,/k and a,//,

respectively, as shown in Fig.2.14. The frequency in the projectile frame is transformed
to

V(k,l) = y'(k,l) (2.94)
Therefore, the (k,/) resonance condition results in
Eoa = (yh0/sin @)k sin(@ - 6) /Ja,| +I5in 6 |a, . (2.95)

For (004), (220) and (I111) planar channeling cases in a diamond structure, a, and a,
can be chosen perpendicular to each other, and Eq.(2.95) becomes

Etrans = wv EV(COSG + lSlne El (296)
a ] A B C

where (4,B) are (1/~/2.1/N2), (1/v2.1) and (1/v2,4/3/2) for (004), (220) and

(111) planar channeling cases, respectively.
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2.3.2. Selection rule

As shown in Fig.2.13, in the case of (k,/) = (1,4) resonance for (220) planar
channeling, another set of atomic strings (open circles) exists just in the middle of the
(1,4) strings (closed circle). The potential for ions is completely canceled by the
interference between these two arrangements of the strings, and the resonant excitation
does not occur. To obtain the (k,/) combinations for absences of the resonant excitation,
only the unit cell is sufficient to be considered. The point of the open circle is expressed
as

A = (172)a, + (1/4)a,. (2.97)
one of the points on the n-th (k,/) string, 4,, which is parallel to 4, is written as
2
A =po 4 N (2.98)
Rk+1 2k+I[

The condition, (4, + A,.,)/2 = A,,.,, is made when the (k,/) combination satisfies,
2k+1=4n+2. (2.99)
For (lil) planar channeling, 4., becomes

Agpen = (1/2)a; + (1/2)a,, (2.100)
and the (k,/) combinations for absence of the resonant excitation should be

k+1=2n+l. (2.101)

In the case of (004) channeling, there is only one atom in a unit cell, and all the (%,/)
combinations are allowed.

2.3.3. Energy level splitting of excited states

Under the channeling condition, excited states of the ions are split into several
levels by the Stark effect due to the crystal static potential. The non-perturbed
Hamiltonian for an electron in a hydrogen-like ion is given by

Z 2
H,(r)=—calp- Bmc’ - ©

(2.102)

A Hamiltonian for the charged particle in the electromagnetic field can be expressed by
the replacements,

pop-SA4, H- H+eg, (2.103)
C

where A and @are vector and scalar potentials, respectively, and the Hamiltonian for the

electron in the hydrogen-like ions passing in a crystal results in
2

H(r,1) = —a Uep + eA(r,1)] - Pmc? - Z,e e@y, (r) —e@(r,1),

-
=—calp - Pmc’ - e@, (r)—ey(1-Pa_)e(r',t). (2.104)

where @,,(r) is a wake potential, which is induced by a response of the material (crystal)
to the moving ion, @r,f) is a crystal potential, the relations of the four-potential, A (r.f)
=A(r,t) =0, and 4 (r,f) = —B@r,t) are used, and the position r’in the laboratory frame is
givenby r'=R+r = R, +r;+Yy(ze, +vr), and e, is an unit vector along z-axis. The
perturbation terms of Eq.(2.104) are written as

A
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H(r)=—eq,(r), (2.105)
H,(x) = —ey(1- Ba. )@ (X +x), (2.106)
H,(r,1) = —ey(1- Ba.) Zbco,d (X +x)exp[- 211G (k,)) AR, +r, +ze,)]

x exp[- 271V (k,1)t]. (2.107)
In the following calculation, a contribution from minor components in H,(x) and H,(r.?),
Ba,, is at most [0.1, and is neglected as 1-LBa, I, the wake potential is calculated from
a dielectric function in the plasmon pole approximation, and the Doyle-Turner potential
is adopted for the crystal potential [76]. The stationary Hamiltonian, H, + H, + H,, gives
eigenstates of the ion in the crystal, and the time-dependent Hamiltonian, H;, induces
the transition between the eigenstates. In this case, nuclear fields for electrons in n = 2
and 3 states are (190 and (M0 V/A, respectively. The difference between these two
fields is larger than a typical static crystal field, for instance, (20 V/A at 0.5 A distance
from the channel center. Therefore, mixings between different n states are neglected.
The wake field is [0.5 V/A, and plays little role in this energy region.

The unperturbed wave function is expressed as |nLJ,u> with the principal quantum

number, n, the orbital angular momentum, L, the total angular momentum, J, and the
projection of J to the quantization axis, . The perturbed energy eigenvalue of the
ground state is given by

E, = B} +(Is(U2)p|H, (r) + H, ()| 1s(/2) ), (2.108)
where E; is the unperturbed energy eigenvalue, and |ls(1/ 2),u> is the wave function

of the ground state. The eigenfunction of n = 2 state is expressed as a linear combination
of the unpertubed wave functions of n = 2 sublevels, which is

Y, = Z cL,ﬂ|2LJ/,l> =c, W, +Csz(’usz +czpy‘P +csz‘P (2.109)
L,J.u

2py 2pz °
where W are the non-relativistic wave functions with spin states. Energy eigenvalues of
n = 2 states and the coefficients in Eq.(2.109) are obtained by solving the secular
equation,

det|(2LJu|H () + H, (r) + H, (r) = E[2L'J'W')| = 0. (2.110)

The Lamb shift of the ground state, AE, = 1.14 eV, and that of 2s state, AE, = 0.16 eV
[77], was included in the unperturbed energy eigenvalues in the present calculation.

The calculated energy levels of n = 2 states as a function of the ion position in the
present experimental condition, 390 MeV/u Ar'"" in Si (220) channel, is shown in
Fig.2.15. The n = 2 states are split into four levels due to the spin-orbit interaction and
the Stark effect by the crystal static field. These four levels are hereafter named as
Levels 1 — 4 in the order of increasing transition energy. The compositions of the wave
functions of Levels 1 — 4, and schematics of the electron distribution, ¥,"¥,, in each
level are shown in Fig.2.16. The level splitting into two parts at the channel center are
originated in the spin-orbit interaction. Level 1, 2 and Level 3, 4 correspond to the states
with J = 1/2 and J = 3/2, respectively. The 2s component is dominant in Level 1 and 2,
and occupies the Level 2 rather than Level 1 in the vicinity of the channel center,
because of the slightly larger transition energy to the 2s state due to the Lamb shift. The
importance of the crystal field increases as the ion approaches the channel wall, and the
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energy splitting between four levels becomes wider. The crystal field plays a major role
for the Stark mixing between 2s and 2p, in Level 1 and 4. It is noted that the larger wing
of the electron cloud extends toward the channel wall in Level 1, however, it extends
toward the channel center in Level 4.

3.33
23.325 -
= i _Level 4
20
= I Level 3
£ i
[=]
g 3.2 Level 2 /
«
| S
e
3.315
3.31

0 0.2 0.4 0.6 0.8
Distance from channel center (angstrom)

Fig.2.15 Calculated transition energy from 1s to n = 2 states of hydrogen-like Ar ion in
vacuum as a function of the distance from channel center. Dotted lines indicate
transition energies to n = 2 states (J = 1/2 and J = 3/2).
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2.3.4. Transition amplitude

The transition probability for RCE from the initial state Y, to the final state ¥, is
obtained by solving the time dependent Schrodinger equation, which is in the present
case,

ih% =[H,(r) + H,(r) + Hy(r) + H, (r,0)] ¥r.0). (2.111)
The solution of the time dependent Schrodinger equation can be written as
Y(r,t)= zaj (W, (r)exp(—iE t/h), (2.112)
a

where E; is the energy eigenvalue of H, + H, + H,. Substituting Eq.(2.112) into
Eq.(2.111), we obtain

6
aat(t) za/ (t)<J|H3

J

=-eyy Zﬂ" (O |@u (X +x)exp[- 271G (k,1) Tze. ] ')

xexpli(E, = E,)/h = 21v (k,I)]. (2.113)
Considering the transition from the state ¥, to the state ¥,, Eq.(2.109) becomes

exp[i(Ej -E; )t/h] ,

ihaaz—t(t) =—ey Zbal ()(2]@, (X + x)exp[- 278G (k, 1) ry, +yze.)]1)
x exi)[i(Ez - E)/h=271v(k,1)]

= M, (X)a, (t)expli(E, - E,)/h = 21v (k,I)]

=My (X)a(t)exp(idyt), (2.114)
where
M, (X) = —ey ZO<2|¢k, (X +x)exp[- 278G (k, 1) Ury, +yze)]1), (2.115)
and ’
A, = (E,~E,) | h = 210k, ). (2.116)

The squared transition matrix element, |M,, , for (k) = (1,1) from Is state to

Level 1 — 4 of 390 MeV/u Ar'”" ion channeled in a Si(220) planes are shown in

Fig.2.17. They become larger as the ion approaches the channel wall because of the
stronger crystal periodic potential. Similarly, in the case of resonant coherent de-
excitation (RCD) from the state ¥, to the state ¥, Eq.(2.113) becomes

ih% = MY (X)a, (t)exp(—id, ). (2.117)

Solving Eqs.(2.114) and (2.117) with an assumption that A,, and M,,(X) are independent
of # under a condition of ¢,(0) = 1 az(O) =0, we get

a,(t) =exp(— zAth/2)ECos—t +—ZLsi n—tEl (2.118)
2iM ) . Q
a,(t) = —hz—;;)exp(lAﬂt/Z) sm?t , (2.119)
where
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AM (X))
Q =\/A§l +|2—2|, (2.120)

is called “Rabi frequency”. The population in the state ¥,, which is given by |a2 () 2,

oscillates with the frequency Q. The oscillation is called “Rabi oscillation”. The
transition probability per unit time from the state ¥, to the state Y, results in

_dlay, 0] _2M, (X0
Wy = = 3

dt hQ

The Rabi frequencies at a large distance (=0.72 A: three-quarter of the distance between
the channel center and wall) and at the channel center are 1.0 X 10" and 1.4 x 10" sec™,
respectively. In other words, the ion path lengths per Rabi oscillation, Az, in the
laboratory frame are 1.8 and 13.5 pm for the above two cases.

sin Q¢ . (2.121)

0.4
m Level4 -F'.
o Level3 .' -
0.3 | e Level2 n .
o Levell n fﬂ
[ D
| |

&
(8}

&
o

Squared transition matrix element (eVz)

0 0.2 0.4 0.6 0.8
Distance from channel center (angstrom)

Fig.2.17 Calculated squared matrix element for (k,/) = (1,1) transition from 1s state to
Level 1 —4 of 390 MeV/u Ar'"" ion channeled in Si(220) planes.
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3. Channeling experiment

3.1. Parallel beam for relativistic channeling

At the beginning, channeling experiments, which are necessary for the RCE
observation, were performed using 290 MeV/u C* and 390 MeV/u Ar'”" ions with Si
crystal. The channeling phenomena were extensively investigated with lower energy
ions so far [1,2]. A channeling experiment with relativistic heavy ions, however, is
limited, because only a few accelerators are available [74,78]. The critical angles for
290 MeV/u C*" and 390 MeV/u Ar ions channeled along Si (220) plane are evaluated

to be 0.12 and 0.10 mrad, respectively, from Eq.(2.77). In general, two slits are adopted
to make a parallel beam. However, the slit becomes one of the origins for producing the
fragments of the projectile in such a high energy region. In the present experiment, a
single iron-collimator with the thickness of 5 cm and the inner-diameter of 1 mm was
adopted at 650 cm upstream of the target crystal (see Fig.3.2). The thickness of the iron-
collimator is larger than the ranges of the incident C and Ar ions. The beam optics was
tuned to be parallel, i.e., not focused, before the beam passed through the collimator.
Fig.3.1 shows a direct beam spot profile of 290 MeV/u C* beam detected by a 2D
position sensitive detector (PSD) located at 8.5 m (the distance in C beam case is
different from that in Fig.3.2) downstream from the collimator. The spot size (FWHM)
was 1.5 mm@ From the spot size and the distance between the collimator and the PSD,
the beam divergence (HWHM) was geometrically determined to be (1.5/2+1.0/2)/8500
[(D.15 mrad. In the case of 390 MeV/u Ar'” ions, 1.8 mmgspot size was obtained, and
the beam divergence becomes (1.8/2+1.0/2)/12100 [0.12 mrad. These beam
divergences are of the same order as the critical angles of channeling, and are small
enough to observe channeling phenomena.

Fig.3.1 2D-spot size of collimated C beam at PSD.
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3.2. Experimental setup

A schematic drawing of the setup for the channeling experiment is given in Fig.3.2.
The collimated Ar'”* (C®") beam was injected into a Si crystal. In the present experiment,
a totally depleted silicon detector (SSD) was adopted as the target to measure the energy
deposition in coincidence with the charge state distribution. The SSD was mounted on a
three-axis goniometer with a precision of 0.001°. A schematic and a performance list of
the goniometer are described in Fig.3.3. Photographs of the iron-collimator and the
goniometer are shown in Fig.3.4 and Fig.3.5, respectively. The transmitted ions were
charge-separated by a magnet, and were detected by the 2D-PSD at the end of the beam
line. The diameter and the gap of the pole piece of the magnet were 25 and 7.8 cm,
respectively. A distance between the magnet and the PSD was 430 cm. An active area of
the PSD was 20 x 20 mm’, and the thickness was 200 pm. The separation between Ar'"*
and Ar'®" at the PSD was about 6 mm, when they were bent by [0.023 rad from the
incident direction. The role of the vertical slit before the magnet was to sharpen the
beam spot in the horizontal direction at the PSD, because the tail of the angular
distribution of the transmitted beam would have affected the neighboring distribution.

a. Silicon detector

The principle of the silicon detector (SSD) is shown in Fig.3.6. A semiconductor,
like silicon, has a band gap between the conduction and the valence bands. When a
particle is injected into the semiconductor and looses the energy in it, electrons in the
valence band are excited to the conduction band across the band gap (energy gap : E,),
and holes are left in the valence band. The number of electron-hole pairs created by the
particle incidence is given by
n=NAFJE, (3.1)
where AFE is the energy deposition of the particle to the detector, and £ is the average
energy which is necessary to create an electron-hole pair. These excited electrons are
collected by a biased electrode, and we can know the energy deposition of the particle
from the collected charge. SSDs with several thicknesses were adopted in the present
study. We adopted SSDs with 19.4, 31.5, 78.5, 94.7 and 524 pm thick which have the
energy resolutions of 30, 45, 50, 80 and 90 keV for 5.5 MeV a-particle, respectively.
These detectors are covered by 40.5 pg/cm’® Au on the entrance surface and 40 pg/cm’
Al on the exit surface. The energy loss in the Au region was [0.5 percent of the total
energy loss even in the case of the 19.4 um SSD, and can be neglected.

b. Position sensitive detector (PSD)

The PSD used in the present experiment is a silicon detector which has four
equally biased electrodes on the four corners. When electric charges, Q,, Q,, Q; and Q,
are collected to the electrodes E,, E,, E, and E, shown in Fig.3.7, the injected position of
the particle is obtained by

— (Q;+Q,)-(Q,+Q,)
: Q+Q,+Q;+Q,
BY: (Q1+Q4)_(Q2+Q3) ’
E Q+Q,+Q;+Q,

It is noted that when several particles are injected at the same time, the PSD recognizes

(3.2)
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the position of their center of mass as the injected position. When the particle is injected
around the center of the PSD, an electric noise component is much smaller than the real
signals. On the other hand, when the particle is injected near one of the electrodes (e.g.
E)), real signals of the other electrodes, Q, — Q, become small enough to be comparable
to the noise component. Therefore, the position resolution of the PSD depends on the
injected position, and is worse near the edge than around the center. The resolutions of

the PSD are about 0.1 mm X 0.1 mm and 0.8 mm % 0.8 mm around the center and near
the edge, respectively.

) Range | Precision

20mm 0.Imm

10mm 0.1lmm
360 [ 0.001 0

5[0 0.001 0
+ 3600 0.001 0

+ [ |+

Sl |of=|=

Fig.3.3 Schematic and performance of three-axis goniometer.
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Fig.3.5 Photograph of goniometer.
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Fig.3.6 Principle of semiconductor detector.
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Fig.3.7 Principle of position sensitive detector to determine the injected position of
the particle.
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c. Electronic circuit

For the purpose of measuring the energy deposition of ions in coincidence with the
charge state distribution of transmitted ions, a following electronic circuit for the
measurement was made, and signals from the SSD and the PSD were taken event by
event. A diagram of the electronic circuit is described in Fig.3.8. The electric charges
collected from the SSD and the PSD were converted into voltages by pre-amplifiers,
and their output pulses were amplified by spectroscopy amplifiers. The SSD signal was
put into a timing-SCA (single channel analyzer). The timing-SCA gives a logic pulse
when the input signal is higher than a certain level, and the noise component can be
discriminated from the real signal. The output signal of the timing-SCA was connected
to “timing in” of a peak-holder. The analog signals from the SSD and the PSD were
delayed by 4.75 us with delay amplifiers because the output signal of the timing-SCA
was delayed [B ps from the input time. These analog signals were put into respective
channels of the peak-holder. The peak-holder is active when the timing pulse gets in,
and keeps pulse heights of the signals put into the respective channels of the peak-
holder. Output signals of the peak-holder were connected to the analog-digital
conversion (ADC)-board, and the digitized signals were taken into a personal computer.
The pulse heights of the analog signals have to be kept by the peak-holder so that the
analog-digital transformation is performed correctly. The data were recorded in a “list
mode”.
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Fig.3.8 Electric circuit system for the coincidence measurement of the energy
deposition to the SSD and the charge state distribution of transmitted ions by the PSD.

49



3.3. Random incidence

3.3.1. Energy deposition for random incidence

Before the channeling experiment, the energy loss and the energy deposition of
random incident ions should be considered. The energy deposition to a Si target (SSD)
was measured in the case of random incidence. For low energy ion, the energy
deposition can be regarded as equal to the energy loss. In the case of the relativistic
energy, however, the energy deposition deviates from the energy loss, because some
energetic electrons produced by “binary collision” with the ion escape from the detector.
A typical energy deposition spectrum for 390 MeV/u Ar'”" ion in the 19.4 pm thick Si
target is shown in Fig.3.9. The average energy deposition amounts to 3.14 MeV. The
mean-free-path for the electron loss in this case was estimated to be 3.3 um [79], which
is much smaller than the target thickness. Assuming that Ar'”" ions are ionized within 20
percent of the target thickness from the entrance surface, and the stopping power is
proportional to the square of the charge, the difference of energy losses between Ar'’”
and Ar'*" incidences in this target is estimated to less than 2 percent. The energy
deposition of Ar'”" ion is considered to be almost equal to that of Ar'"" ion. The
theoretical value of energy loss calculated with Eq.(2.32) for Z, = 18 is 3.73 MeV. To
evaluate the energy loss from the energy deposition, the fraction of escaped electrons
and their energies are necessary. Therefore, it is necessary to estimate the effect of the
escaped electrons in order to compare the measured energy deposition with the
theoretical energy loss.

500

400

w
—
<

Counts/channel
[\®]
<&
(]

Calculated energy loss

1 2 3 4 5
Energy deposition (MeV)

Fig.3.9 Spectrum of experimental energy deposition for 390 MeV/u Ar'"" incidence

in the Si target with the thickness of 19.4 pum. The arrow indicates the value of the
calculated energy loss.
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Fig.3.10 shows measured energy depositions and theoretical energy losses for Si targets
with several thicknesses. The difference tends to be larger as the target thickness
increases, and must saturate for the thickness larger than the range of the scattered
electron with the maximum energy (LIl MeV) in Si, which is [11.7 mm.

20
® Energy loss (th.)
15 O Energy deposition (exp.)
>
2]
3
> 10
on
S
=
=
5 =
0
0 20 40 60 80 100

Target thickness (micron)

Fig.3.10 Comparison between theoretical energy loss and experimental energy
deposition as a function of the target thickness.

3.3.2. Monte Carlo simulation

The difference between the energy loss and energy deposition was evaluated by a
Monte Carlo simulation [80,81]. As discussed in Sec.2.1.1, the stopping power can be
divided into two parts, which are originated in the distant and the close collisions. As
for the distant collision, (K<l/a), the energy loss was calculated by Eq.(A.10). The
experimental value of the mean ionization energy listed in ref.[82] was adopted as the /-
value in the calculation. The distant collision does not contribute to the electron escape
because of the small energy transfer. Therefore, the energy loss due to the close
collision was calculated by the Monte Carlo method. A distribution of the probability
for transferring the energy, 7, to a target electron was determined by the Mott
differential cross section in Eq.(2.23), and the scattering angle, 6, was related to the
energy transfer by Eq(2.25). The scattering angle in the center of mass frame, 6, was
transformed to that in the laboratory frame, €', through the relation
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y*sin’®(6/2)
1+(y* —1)sin*(6/2)
The decrease of the ion velocity was not taken into account, because the energy loss is
less than 0.3 percent of the incident energy even in the case of 390 MeV Ar'®" ions in
200 pm Si target. When the extraporated range of the scattered electron, R (7), is larger
than the distance between the collision point and the target surface, /, shown in Fig.3.11,
the electron escapes from the target with energy, E_,, which satisfies

out?

Rex(Eout) = Rex(T) - l (34)
The total energy of the escaped electron, £, was obtained by summing the energy, £,
for each collision. The energy deposition of the ion was obtained by

AE'D:AE'L_l;ey (35)

where AE, is the energy loss.

cos’ @' = (3.3)

electron
(with energy E, )

/V

ion
A |

Si

Fig.3.11 Energetic electron escaped from the target.

52



3.3.3. Results and discussion

Simulated spectra of the energy loss (thin line) and the energy deposition (thick
line) for 390 MeV/u Ar'* ions in Si targets with thicknesses of 1.0, 19.4 and 200 pm are
shown in Fig.3.12. The abscissa is the energy (loss and deposition) divided by the target
thickness. There are some interesting features in these results. In the case of 1.0 pm
target, both the energy loss and the energy deposition spectra have a tail in the higher
energy side, which have a feature of the Landau distribution. The energy loss remains a
high energy tail for 19.4 um target, but the energy deposition gets more like symmetric
Gaussian shape. In the case of 200 pum, both distributions look symmetric. These
sequential changes of the energy loss distribution more or less correspond to the
variation of the parameter, K, defined in Eq.(2.33), which is 0.012, 0.23 and 2.3 for 1.0,
19.4 and 200 pm target, respectively. As for the energy deposition distribution, the

19.4 um

Counts/Channel

3000 200 pm
2000 |
1000 |

0

0.10 0.15 0.20 0.25 0.30
Energy/thickness (MeV/micron)

Fig.3.12 Simulated spectra of energy loss (thin line) and energy deposition (thick line)
of 390 MeV/u Ar'"" incidence in Si target with the thicknesses of 1, 19.4 and 200 pm.
The dotted line represents the experimental energy deposition.
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maximum energy transfer, 7, ., in Eq.(2.33) has to be replaced with an effective energy
transfer, 7",

because the electrons with the energy close to 7, escape from the target.
The effective maximum energy transfer, 7', is estimated from the extrapolated range
of electron, R, (T ,.), which should be equal to the target thickness. Replaced
parameters, K = & T, for 1.0, 19.4 and 200 pm cases are 1.1, 3.5, and 9.4,
respectively. Therefore, the energy deposition spectrum for 19.4 pm case is seen to be
more like the Gaussian shape, which is different from the energy loss spectrum at the
same thickness. The dotted line represents the experimental energy deposition. The peak

position of the simulated spectrum is slightly different from the experimental one,
however, the shape and width reproduce the experimental result very well.

3.3.4. AE-counter for relativistic particle with high precision

Fig.3.13 shows the target thickness dependence of simulated g; /AE, and 0,/AE,,
where 0; and 0, are standard deviations of the energy deposition and the energy loss
distributions, respectively. Both g; /AE; and 0,/AE, become smaller with the increase
of the target thickness. In the thinner region than 20 pm, o; /AE, increases drastically.
On the other hand, g,/AE}, does not show a drastic increase in the thinner region. If the
SSD is adopted as a AE-counter, e.g., for the particle identification from the energy
deposition, the relative resolution is determined by g,/AE,,. Fig.3.13 indicates that
1) The relative energy resolution is better for larger SSD thickness, when the energy
loss of the incident particle can be neglected.
2) Even in the case of thin SSD, however, the resolution is comparatively high for
particles with relativistic energies.
The SSD thickness which gives a comparatively high resolution, i.e., whose energy
deposition distribution becomes the Gaussian shape, is estimated from the value of
parameter K . Fig.3.14 shows the thickness dependence of parameters kK and k™ for 390
MeV/u Ar ions in a Si traget. It suggests that the SSD with several 10 pum thichness (K’
>>1) can be used as a high resolution AE-counter, although the energy loss distribution
has a higher energy tail, i.e. kK <<I.
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Fig.3.13 Ratio of the standard deviation, g;, to the energy loss, AE;, and that of the
standard deviation, 0, to the energy deposition, AE,,, as a function of the target (Si)
thickness for 390 MeV/u Ar'*" ions.
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Fig.3.14 Parameters, K and K", as functions of the target thickness.
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3.4. Channeling case

3.4.1. Determination of crystal orientation

The crystal orientation was determined with a precision of 1° by X-ray diffraction
in advance, and the quality of the crystal was evaluated through the X-ray topography.
The crystal (SSD) mounted on the goniometer was rotated on two orthogonal axes,
while the energy deposition and the charge state distribution were monited. Under the
channeling condition, the energy deposition shifted to lower side, and the survived Ar'’
ions increased. An example of the fraction of Ar'”" ions as a function of the tilt angle is
shown in Fig.3.15. Several peaks are seen which correspond to planar channeling
conditions. Scanned paths in the experiment are indicated by dotted lines with the arrow
in Fig.3.16. Circles are positions of planar channeling conditions found in the scans.
The thick line represents the scan shown in Fig.3.15. This shows how several planar
directions were found and the [110] axial direction was determined.

0.5

111)

17+

Fraction of survived Ar

0 0.5 1 1.5 2
Tilt angle (deg.)

Fig.3.15 Fraction of survived Ar'”" ions as a function of the tilt angle 6.
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Fig.3.16 Direction of the [110] axis and several planes of Si crystal. The dotted lines
with the arrow represent scanned paths. The thick line is the scan shown in Fig.3.15.
The circles are positions under planar channeling conditions.
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3.4.2. Angular distribution of channeled ions

The beam spot profiles of 290 MeV/u C® ions transmitted through 524 pm Si
crystal for random and the [110] axial channeling cases are shown in Fig.3.17. From the
spot size measured by the PSD and the geometrical configuration, the angular spreading
due to passage through the target was estimated to be 1.4 mrad (HWHM) for random
incidence. Assuming that the minimum impact parameter, b,,,, is about the nuclear size,
and the maximum impact parameter, b, [aqs, the angular straggling evaluated from
Eq.(2.47) is 1.5 mad. The measured value agrees with the theoretical value. On the
contrary, the [110] axial channeling condition does not show any significant angular
broadening, because the probability of large angle scattering is quite small.

(a) Random

i
I | ,m\ﬁ“ \|
i

fi
R

20 mm

Fig.3.17 2D-spot size of 290 MeV/u C®" ions at PSD for (a) random incidence and (b)
under the [110] axial channeling condition.
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3.4.3. Energy deposition under channeling condition

The energy depositions of 290 MeV/u C® ions and 390 MeV/u Ar'"" ions
channeled in a Si crystal were measured in coincidence with the exit charge state. The
energy deposition spectra of 290 MeV/u C® ions in 524 pm target for random incidence
and [110] axial and several planar channelings are shown in Fig.3.18. In this energy
region, all the exit charge state is 6+, because the electron capture cross section is
negligibly small. The abscissa is normalized to the mean energy deposition for a random
incidence. Under the [110] axial channeling condition, the peak of the energy deposition
was reduced to 5.8 MeV from that for random incidence, which was 11.8 MeV. A small
peak in the higher energy region corresponds to the non-channeled component. Under
the (004), (220) and (111) planar channeling conditions, the energy deposition

spectrum also has two components corresponding to channeled and non-channeled. The
inter-planar distances, d,, of the (004), (220) and (l111) planes are 1.36, 1.92 and 3.14

A, respectively. The peak positions for the channeled component were 7.7, 6.6 and 5.2
MeV for (004), (220) and (I111) planar channeling cases, respectively, and the peak
shape depended on the channel plane.

In the case of 390 MeV/u Ar'” ions in 94.7 um target, almost all ions were ionized
for random incidence, because the target thickness is much larger than the ionization

mean-free-path of 3.3 pm. Under the (220) planar channeling condition, the fraction of

ionized Ar'®" ions was about 80 percent, and about 20 percent of incident Ar'’" ions

maintained the initial charge states throughout the passage. The energy deposition
spectra for final charge states of 18+ and 17+ are shown in Fig.3.19. The spectrum for
Ar'® ions (Fig.3.19a) also consists of two components. The dotted line shows the
energy deposition spectrum for random incident case, which has a peak at 16.4 MeV. It
is remarkable that the peak position of non-channeled component under the channeling
condition is 7 percent higher than that for random incidence. This can be attributed to
“quasi-channeled ions”, which spend quite a long time near the channel wall, where the
averaged electron density along the trajectory becomes larger than the mean electron
density of the target. Therefore, the energy loss (also energy deposition) becomes larger
than that for random incidence. The fraction of non-channeled component is
considerably smaller than the case of C* ions. This can be attributed to the thinner
crystal, which gives the channeled ions less chances for de-channeling. A small
difference of the beam angular divergence between C ([D.15 mrad) and Ar ([D.12 mrad)
can be another reason for changing the fraction of non-channeled component. On the
other hand, the spectrum for Ar'’* ions (Fig.3.19b) has only the channeled component. It
means that only the ions which have passed through near the channel center can keep
their incident charge state (i.e., charge-frozen). The peak position is [110 percent smaller
compared with that of channeled component for Ar'*" case, because the stopping power
is proportional to the square of the effective charge of the projectile, Z,, and the
trajectory of Ar'”" can concentrate more around the channel center. In the case of
random incidence with 4.1 pum Si traget, Z.; for charge-frozen Ar'"" is 17.36 [81]. For
the best channeled ions, Z_; is expected to be closer to 17, because the distant collision
is more dominant compared with the random case. The reduction of energy deposition
of best channeled Ar'” ions from that of Ar'*" ions is roughly estimated to (18°-17%)/18*
= 10.8 percent, which agrees with the experimental result.
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Fig.3.18 Energy deposition spectra of 290 MeV/u C®" ions in 524 pum Si crystal for
random incidence and several channeling cases. The thick lines indicate the results
of the simulation. The abscissa is the ratio to the energy deposition for random
incidence.
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Fig.3.19 Energy deposition spectra for 390 MeV/u Ar ™ ions under (220) planar

channeling condition in 94.7 um Si crystal. (a) The experimental result for the exit charge
of 18+ (thin line). The dotted line represents the energy deposition for random incidence.
The thick line is the result of the simulation. (b) The experimental result for the exit
charge of 17+. The closed circles show the result of the Monte Carlo simulation. The
abscissa is a ratio to the energy deposition for random incidence.
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3.4.4. Simulation of energy deposition under channeling condition

The energy deposition of the planar channeled ion depends on the oscillation
amplitude. To obtain a relation between the energy deposition and the oscillation
amplitude, the energy depositions of channeled ions were simulated by calculating the
local electron density along the ion trajectory, and the results were compared with the
experimental energy deposition. A flow chart of the simulation is given in Fig.3.20. The
calculation is based on the Lindhard’s formula in Eq.(2.78), which consists of the
distant and the close collision parts. The stopping power was divided into two parts by a
momentum transfer,
hK, = fh/ay, (3.6)
where f'is a fitting parameter. The formula of the local stopping power for channeled
ions is expressed as

452 hK,vy _ B’ 2mvy _ BZ rZaB
S()-—DZNE ; ZE+Zn()E T % 3.7)

where ¢, is a charge of the incident ion, and n,.(x) is the local electron dens1ty. The value
of =1 in this formula roughly corresponds to a, = 1/2 in the Lindhard formula, i.e., the
contribution from the distant collision is about a half of the random stopping power
(equipartition rule). The local electron density was derived from the planar potential in
Eq.(2.65) using the Poisson equation. The averaged stopping power along the ion
trajectory with the oscillation amplitude x, is obtained by

Sty =—a (3% g (3.8)
osc (xo ) 0 Ug (x)
where 7, _(x) is a period of the oscillation, which is given by

0sc

fodx
osc (xO ) 4 ’ (3 9)
0 vy(x)
and v(x) is the ion velocity perpendicular to the channel plane, which satisfies
%Mlvé(x)+Up(x):Up(x0). (3.10)

When the target thickness, z,, is more than several times larger than the ion path length
per oscillation, A = vT(x,), the total energy loss throughout the path can be written as

AE, (x,) = S(x,) . (3.11)
The energy deposition of channeled ions was evaluated by modifying Eq.(3.5) to,

ne(x )
AE(x,) = AE —F 3.12
(%) =AE| (x,) = NZ, T (3.12)
where n.(x,) is the averaged local electron density along the ion trajectory, which is
given by
o) = (el (3.13)

osc(xO) 0 UD(x)
The energy loss and the energy deposition were calculated for each trajectory.

The incident beam divergence was taken to be the same as the experimental
condition. The ions whose nearest distance to the channel wall was smaller than the
one-dimensional amplitude of the thermal lattice vibration, ,(=0.075 A for Si at 25°C),
were treated as random incident ions, i.e., the energy loss was calculated by Bethe’s
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formula with the linear Mott correction [83]. The de-channeling effect during the travel
in the crystal was not taken into account.

( START )

>

Setting an angle and a position
of incident ion

Analytical calculation of energy
loss due to distant collision

Calculation of ion trajectory
and local electron density

Yes
dj2 —xy<u,
No
Calculation of energy loss due to close Analytical calculation
collision from the averaged local of random energy loss

electron density along the trajectory

«<

Yes

Other trajectories ?

No

Summing distributions of energy loss and
energy deposition for all trajectories

(  STOP )

Fig.3.20 Flow chart of the simulation for energy loss and energy deposition of
channeled ions.
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3.4.5. Results and discussion

Simulated energy depositions for the case of C°* ions with 524 um Si crystal are
shown in Fig.3.18 by thick lines. The fitting parameters, f, were selected as 0.45, 0.45
and 0.30 for (004), (220) and (111) channelings, respectively, so that the peak position

of the channeled component agrees with the experimental one. It has to be noted that
the (111) planar channel has two different inter-planar distances as shown Fig.3.21,
which may be the reason of smaller value of f for the (111) planar channeling case. The
maximum impact parameter for the close collision is given by Ul/K,. The value of /=
0.45, i.e., the cut-off momentum transfer (divided by %) K, = 0.45/a;;, means that the
impact parameter for the close collision is effectively about two times larger than the
case where the stopping power can be expressed by the equipartition rule. The smaller
fraction of non-channeled component in the simulation compared with the experimental
result can be attributed to the lack of the de-channeling effect in the simulation. The
shape of the channeled component reproduced the experimental result very well for all
planar channeling cases.

Simulated results for 390 MeV/u Ar'’* ions (220) planar channeled in 94.7 pm Si

crystal are shown in Fig.3.19 by thick lines. The parameter, f = 0.45, was also used for
Ar ions. When the final charge state is 18+, the simulation was performed assuming the
charge state was 18+ throughout the passage. This is not a bad assumption, because the
mean-free-path for ionization, A, [60 pm, is smaller than the target thickness even in
the channeling case, and the screening effect by the bound electron has an influence
only for the distant collision. Not only the shape of the spectrum but also the fraction of
non-channeled component are in good agreement with the experimental results, because
the de-channeling effect is smaller than the case of C ions where the crystal was [5.5
times thicker. In the case of Ar'”" ions with frozen-charge state, the representation of the
energy deposition by the Gaussian shape is no longer appropriate, because these
channeled ions are expected to travel near the channel center, where the number of
collisions with the target electron is quite small. The value of K in Eq.(2.33) for the best
channeled ions becomes 0.29, which satisfies the condition for Landau distribution
rather than the Gaussian shape. The closed circles in Fig3.19b are the result of the
Monte Carlo simulation, when the incident distance of the channeled Ar'’" ions from the
channel center is less than d /4. The distance was roughly selected, since the mean-free-
path for 1s-ionization of channeled ions with the oscillation amplitude larger than [d /4
is smaller than the target thickness, i.e., these channeled ions are regarded not to be
ionized. The result of the Monte Carlo simulation shows a good agreement with
experimental result.

From this calculation, a relation between the energy deposition and the oscillation
amplitude of the channeled ions was obtained, which is shown in Fig.3.22a for 290
MeV/u C* ions in 524 pm Si crystal under (004), (220) and (111) planar channeling

conditions. The energy deposition slowly increases with the growth of the oscillation
amplitude near the channel center, and then it rises rapidly at the vicinity of the channel
wall and exceeds the energy deposition for random incidence. Fig.3.22b shows local
electron densities in (004), (220) and (111) planes as functions of the distance from
the channel center. The relation between the energy deposition and the oscillation
amplitude of (220) planar channeled Ar'”" and Ar'® ions are shown in Fig.3.23a. A
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relation between the ion path length per oscillation and the oscillation amplitude was
also obtained from the simulation, and the result is shown in Fig.3.23b. The ion path
length per oscillation, A, is [B pm in this case. The survived Ar'"* fraction as a
function of the oscillation amplitude is obtained from the experimental result of the
charge state distribution measured in coincidence with the energy deposition, which is
shown by open circles in Fig.3.24. Here, the simulated relation between the energy
deposition and the oscillation amplitude is used. The vertical and horizontal error bars
were evaluated from the statistical fluctuation and the energy straggling, respectively.
For the best channeled ions, about 80 percent of the incident Ar'”" ions survived after
transmission through the 94.7 pum crystal. On the contrary, channeled ions with the
oscillation amplitude larger than 0.7 A hardly survived. The solid line shows a reesult
calculated from the 1s-ionization cross section and from the target electron and nuclear
(plane) densities. The local electron density was calculated with the Moliére potential,
and a one-dimensional nuclear density originating from the thermal lattice vibration was
represented by
NO

AR P sy &
A long dashed line shows the results when the nuclear distribution is represented by the
Gaussian shape with the standard deviation of u, (=0.075 A), and the dotted line
indicates the result without nuclear impact ionization. In the present case, selecting both
R and a as 0.075 A, the calculation well reproduced the experimental result. The same

nuclear effect for ionization or excitation is used in the Monte Carlo simulation on RCE
in Chap.4.

(3.14)

< > < >
d /4 3d /4

P

Fig.3.21 Real Si (111) planar channel : d,=3.14 A.
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Fig.3.24 Fraction of survived Ar'”" ions as a function of the oscillation amplitude. The
open circles indicate the experimental results. Calculated results with the nuclear
distribution represented by Eq.(3.14) (solid line), by the Gaussian shape (long dashed
line) and without nuclear impact ionization (dotted line) are shown.
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4. Observation of resonant coherent excitation

4.1. How to observe RCE

Fig.4.1 shows ion energies, which satisfy the RCE conditions for the 1s-2p
transition of hydrogen-like Ar'"" ions channeled in the Si (220) planes, as functions of
the tilt angle from the [110] axis. The numbers in parentheses indicate indexes of the
resonance, (k,[), given in Eq.(2.96). Using 390 MeV/u Ar'”" ions, several resonant
excitations can be realized by scanning the tilt angle (dotted line). Channeled ions with
bound electrons are excited or ionized primarily through collisions with target electrons
as shown in Fig.4.2. Under the 1s-2p RCE condition, the relative fraction of the
ionization via n = 2 states increases. Therefore, we can observe the RCE through
measurements of the charge state distribution of transmitted ions and the yield of
convoy electrons. [9,18]
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Fig.4.1 lIon energies, which satisfy the 1s-2p RCE condition for (220) planar

channeled Ar'”" ions as functions of the tilt angle from [110] axis. The numbers in
parentheses mean the indexes of the resonance. The dotted line indicates the scan in
the present experiment.
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The electrons excited to the n = 2 states have another decay cannel, which is the
de-excitation accompanied by the X-ray emission. In the case of Ar'”" ion, the 2p-1s
transition energy is [B.3 keV, and the wavelength of the corresponding X-ray, A, is
[B.8x10™* cm. The mean orbital radius of the 2p electron of Ar'” ion, 7, is (1.6x107
cm. In this case, k[# =(27Tr/)\), is [0.2 < 1, which indicates that the dipole (E1)

transition is dominant. The radiative lifetime of the 2p state of Ar'”" is 1.53 x 10 " s
[84], which corresponds to the ion path length of 4.6 pm in the present case. When the
quantization axis is selected as x-axis, the angular distribution of the X-ray emission for
E1 transition from 2p_ is given by

£=isin29, 4.1)
dQ 8m

where O1is the angle from the quantization axis. Each n = 2 state, which is named Levels
1 = 4 in Sec.2.3, has different fractions of 2p,, 2p, and 2p, components (Fig.2.16).
Therefore, an anisotropy of the X-ray emission from the ions excited to the level in
which 2p,, 2p, and 2p, components are not equally contained is expected to be observed
[20]. On the other hand, X-rays from 2s state can not be observed although the state
decays by two-photon dipole (2E1) transition with a lifetime of 3.5 ns [85], because the
ion path length corresponding to the lifetime is much larger than the mean-free-path for
2s-ionization. Accordingly, the measurement of the de-excitation X-rays gives us not
only an evidence of the RCE but also a more detailed understanding of the n = 2 excited
states of the channeled ions, for instance, whether the excited ions maintain their initial
composition of 2s, 2p,, 2p, and 2p, components or not.

n =2 ionization
1s-ionization

de-excitation

Fig.4.2 Processes of the hydrogen-like ion traveling in the target.
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4.2. Experimental setup

A schematic drawing of experimental setup for the RCE observation through
measurement of the charge state of transmitted ions and the convoy electrons is given in
Fig.4.3. A 390 MeV/u Ar'”" ion beam was injected into a Si crystal mounted on the
three-axis goniometer. The transmitted ions were charge-separated by a magnet, and
were detected by a 2D-PSD. The convoy electrons were bent by a magnetic analyzer,
and were detected by an SSD with a depletion layer of 5 mm. The range of convoy
electron (214 keV) is about 200 pm in aluminum. Two aluminum slits with the
thickness of 5 mm and with the inner-diameter of 5 mm were placed at the exit of the
magnetic analyzer and in front of the SSD. The electrons within the forward angle of 1°
were detected by the SSD. The momentum spectrum of convoy electrons was obtained
by scanning the magnetic field of the analyzer. A typical energy spectrum detected by
the SSD for a fixed magnetic field is shown in Fig.4.4. Because the SSD is energy
sensitive, it is useful to select the signal of the convoy electrons from the energetic
background electrons and/or )rays.

A schematic drawing of experimental setup for the RCE observation through the
measurement of the de-excitation X-rays is given in Fig.4.5. In the X-ray measurement,
the Si(220) plane is kept horizontal, and the angle 6 defined in Fig.3.3 is altered. Two

Si(Li)-detectors were placed at 41° from the beam direction on the horizontal and
vertical planes, which are named “Detector (H)” and “Detector (V)” hereafter. The
angle 41° in the laboratory frame corresponds to 84.4° in the projectile frame, and the
de-excitation X-ray from 2p, can be measured with almost the maximum intensity as
well as that from 2p,. Here, x and z-axes are defined as perpendicular to the channel
plane and parallel to the beam direction, respectively. Geometrical efficiencies for the
detectors were [11.8x10™. Aluminum foils with the thickness of 2 pum were located in
front of the detectors to reduce the background in the lower energy region. Transmitted
fraction of de-excitation X-rays from Ar ions through the aluminum foil was about 90
percent. To monitor the beam intensity, another Si(Li) detector was placed with a Cu-
foil of 50 pm thickness at the end of the beam line, and Cu K, X-rays were detected.
The maximum beam intensity for measuring the charge state distribution was [0’
particle/sec, because the 2D-PSD did not work for higher beam intensity. On the other
hand, measurement of X-rays or convoy electrons needed the beam intensity of [I10°
particle/sec. The relation between the number of particles detected by the 2D-PSD and
the intensity of Cu K, X-rays were obtained in advance.

71



SSD
I
— N

10 ch Al slits
Magnet
Si crystal P .
Ar'?* 7 \\
- 2D-PSD
‘ ll ‘| Arl7+
< » Magnetic - \\\ /// Ar
10cm  Analyzer Vertical slit ~ ™~-____ -7

Fig.4.3 Schematic drawing of experimental setup for RCE observation through the
measurement of convoy electrons.
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Fig.4.4 Typical energy spectrum detected by the SSD for a fixed magnetic
field of the analyzer.
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4.3. Measurement of charge state distribution

4.3.1. RCE profile for charge state distribution

The fractions of Ar'®" transmitted through 78.5 pum Si crystal for (004) planar
channeling case, and 94.7 um Si crystal for (004), (220) and (111) planar channeling
cases are shown in Fig.4.6 as functions of the tilt angle from the [110] axis on the above
channel plane. Sharp resonance peaks corresponding to (k,/) = (1,1), (1,2), (1,3), (1,5),
(1,6) and (k) = (1,1), (1,3), (1,5) were observed for (220) and (111) planar
channelings, respectively. Resonance peaks corresponding to (k,/) = (1,4) for (220)
planar case and (k,/) = (1,2) and (1,4) for (111) planar case were absent because of the

selection rule discussed in Sec.2.3.2. In the case of (004) planar channeling, all
resonance peaks from (k,/) = (1,1) to (1,6) were observed as expected.

4.3.2. Fine structure of (k£,/) = (1,1) resonance
Results of the fine scan around the (k,/) = (1,1) resonance for the (220) planar

channeling with 94.7 and 21 pm crystals are shown in Fig.4.7. The lower scale is the tilt
angle from the [110] axis, and the upper scale is the transition energy corresponding to
the tilt angle by Eq.(2.96). In the case of 94.7 pm crystal (SSD), the fraction of ionized
Ar' was [BO percent for off-resonance, and increased to [D5 percent under the
resonance condition. The resonance was split into two peaks because of the spin-orbit
interaction. Dotted lines in the figure indicate the transition energies of hydrogen-like
Ar from 1s to n =2 (J = 1/2and J = 3/2) states in vacuum, which are 3.3182 and 3.3230
keV, respectively. The J = 1/2 peak has a doublet structure originating in the Stark effect
by the static crystal field.

In the present experiment, the energy deposition of the ion to the target crystal
(SSD) was also measured in coincidence with its charge state. Survived Ar'”" fraction
after the transmission through the crystal with the thickness, z,, is a function of the tilt
angle, 6, and the energy deposition, AE, i.e., ' (6.AE,z,). Fig.4.8 shows a contour
map of f'(8,AE,z,). The abscissa and the ordinate are the tilt angle and the energy

deposition, respectively. The left scale of the ordinate is the oscillation amplitude
corresponding to the energy deposition through the simulated results in Sec.3.4.5.
Channeled ions experience incoherent ionization, incoherent excitation/de-excitation,
and coherent excitation/de-excitation. Accordingly, the fraction, f "(O.AE,z,),
reflects the contributions of incoherent ionization by the target electron impact as well
as the ionization subsequent to the coherent excitation. To describe the atomic process
of the channeled ion rigorously, the time dependent Schrodinger equation including the
coherent and incoherent processes [14] should be solved. However, in this section, a
simple rate equation was preliminarily adopted to extract the ionized fraction through
the II%CE process from the experimental result [86], which is

w =—(kg +k)f"(6,AE,z2), 4.2)

4

where k; and k; are ionization rates per unit length through the RCE and through only
incoherent processes, respectively. For off-resonance case, i.e., 8= 6,5, kz becomes to 0.
The ionization rate, k;, is considered to be constant except when the ions get off the
channeling condition. Solving Eq.(4.2), survived Ar'’" fractions after transmission
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under (220), (004) and (111) planar channeling conditions.
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through the crystal under the RCE and off-resonance conditions are given by

f7(B,AE, z,) = e *r w0 (4.3)
and
f” (eoff 5AE:ZO) = e_kizo ) (44)

respectively. Here, an ionized fraction only through the RCE process, i.e., without the
incoherent ionization from the ground state, is introduced to evaluate the subsequent
ionized fraction after the RCE, which is given by

Foly (O,AE)=1—e "% (4.5)
Adopting Eqgs.(4.3) and (4.4), Fplp'*(6,AE) can be written as
Feie "(B.LE)=1= [ (O.AE,2)/ 7 B DE,2)). (4.6)

The contour map of the fraction, Fngg "(0,AE), is shown in Fig.4.9. The fraction,
F.l;"(0,AE), becomes larger as the increase of the oscillation amplitude. This is due
to the large RCE probability near the channel wall. The fact that oscillating ions spend
longer time near the turning point of the trajectory than near the channel center tends to
enhance F.;'*(0,AE) for the larger amplitude. Fig.4.10 shows calculated energy
levels of n = 2 states (Fig.2.15) described in the linear scale of the energy deposition,
where the oscillation amplitude corresponding to the energy deposition is regarded as
the distance form the channel center. The map of F,/;'*(6,AE) reflects the energy

level of n = 2 states, and the wide splitting between Level 1 and 2 was clearly observed.
The energy resolution of the SSD was [BO keV. However, the experimental result was
blurred by the energy straggling, which amounts to Ul MeV. Moreover, there is a
possibility of RCE not only at the turning point but also at other positions along the
trajectory, and this fact also obscured the experimental results. As a result, no dip
between Level 3 and 4 was observed.

Fig.4.7b is the (k,/) = (1,1) resonance profile for a crystal with a thickness of 21 pm.
In this case, the fraction of ionized Ar'®" after transmission through the crystal was
reduced to [H0 percent for off-resonance, while the fraction for thicker 94.7 pm crystal
was [BO percent. Under the RCE condition, the fraction increased to [BO percent. The
profile shows two peaks and the doublet structure of the left peak, which are the same
features as those for 94.7 pum crystal (Fig.4.7a). However, the doublet structure was
more clearly observed compared with the thicker case. This result is explained in the
following way. From the electron impact ionization cross section [79] and the calculated
target electron and nuclear densities averaged along the ion trajectory, the mean-free-
path for 2p-ionization, A,,,, for channeled ions with the large oscillation amplitude (=
0.72 A) is estimated to be [l.6 um. Therefore, once they are excited, they are easily
ionized. On the other hand, the value of A, for the best channeled ions is estimated to
be ~58 um, and they mostly maintain the incident charge state after passing through the
21 pm crystal even if they are excited. We can understand from Fig.4.10 that the
channeled ions with the large oscillation amplitude excited to Level 1 and 2 correspond
to the left and right peaks of the doublet structure, and the best channeled ions excited to
Level 1 and 2 correspond to the dip. Therefore, the clear doublet structure in Fig.4.7b
was formed. However, in the case of the 94.7 um crystal, which is thicker than A, for
the best channeled ions, excited ions are eventually ionized. As a result, the dip was
filled up, and the doublet structure was not clearly observed.
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Fig.4.7 Detailed resonance profile of (k,/) = (1,1) for (220) planar channeling in (a)
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4.3.3. Possible application to high precision atomic spectroscopy

Fig.4.11 is a sliced section of the contour map in Fig.4.9 in the range from 8.25 to
8.85 MeV, which corresponds to the channeled ions near the channel center. At the
channel center, the crystal static field has little effect, and the splitting into two peaks
dominantly originated from the spin-orbit interaction. Observed width (HWHM) of the
J = 3/2 peak is 0.94 ¢V. The beam angular divergence (A8 = 0.12 mrad) affect to the
peak width, which corresponds to the fluctuations of the transition energy of 0.26 eV.
The fluctuation of the incident ion energy (AE,/E, = 4x10*) also affect to the peak. In
this experiment, the beam was collimated by the 1 mm@iron collimator, and the energy
fluctuation may be suppressed, which is estimated to be AE/E, = 20p,/p, 0200 = 2.4
x10*. This fluctuation corresponds to the peak width (fluctuation of the transition
energy) of 0.47 eV. The total fluctuation of the transition energy amounts to

\/(0.26)2 +(0.47)> =0.54 eV. The energy loss of the best channeled ion in 94.7 um Si

crystal is [P MeV, which corresponds to [l.1 eV-shift of the transition energy. However,
a half of the ion path length per Rabi oscillation, A/2, for the best channeled ion is 6.7
Mm, i.e., the RCE occurs mostly near the entrance surface of the crystal. Accordingly, an
effective energy loss in 6.7 um thickness affecting the resolution is reduced to [0.078
eV, which is much smaller than the above fluctuation. Therefore, the resonance width is

estimated to be [0y/(0.94)° —(0.54)> = 0.77 eV, which is 2.3 x10* of the transition

energy. The relative resonance width, OF/E, ., is given by
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Fig.4.11 Tonized fraction through RCE process in the sliced section at energy range
from 8.25 to 8.85 MeV.
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where ¢ is the perturbation time, d is the distance between atomic strings, and » is the
number of the strings which the ion traverses in the time z. Accordingly, to achieve the
relative width, 0E/E, .. [2 X107, n should be [5 x10°, i.e., the coherent length of the
RCE for the best channeled ions amounts to [5 x10°d, which is of the order of pum.

Fig.4.12 shows the J = 3/2 peak in Fig.4.11 fitted by the Gaussian shape. From the
fitting, the peak position is determined within an accuracy of 0.04 eV. The determined
peak position corresponds to the average of shifted energies (0.23 eV) for transition to
Level 3 and 4, because the J = 3/2 state is split, shifting by 0.32 eV (Level 3) and 0.14
eV (Level4) to lower energy side the due to the wake field and the second order crystal
field. If both transition energies from 1s to 2p and 1s to 3p are measured in the accuracy
of 0.04 eV for ions with the same energy, the absolute ion energy can be determined
within the precision of 9 x107°. The accuracy of 0.04 eV means that the Lamb shift of
hydrogen-like Ar (1.14 eV) can be determined in the precision of 3.5 percent, which is
of the same order of 1.5 percent in the latest measurement [87]. Therefore, this
measurement has a possibility to become a new method of atomic spectroscopy with a
high precision.

Fraction

0 | N | I i I : I i I | I I i I i I
3321 3322 3323 3324 3325

Transition energy (eV)

Fig.4.12 Resonance peak for J = 3/2 in Fig.4.11 with the fitting line by the Gaussian
shape.
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4.4. Measurement of convoy electron

Momentum spectra of convoy electrons were obtained by the measurement with
the magnetic analyzer, and were transformed to energy spectra through the relations
between the differential cross sections,

do _dp dg _|(ne’)’ +(po)* do

dE dE dp pc’ dp’
Fig.4.13a is a typical energy spectrum of convoy electrons for 530 pg/cm’ (2.35 pm)
amorphous C target. Energy of the convoy electron is calculated to be 214 keV from the
projectile velocity. Because the energy loss of the convoy electron in the target is quite
small ([ keV), the measured peak energy of the convoy electron agrees with the
calculation, and the convoy electrons form a “cusp” shape in the energy spectrum.

Fig.4.13b shows spectra of convoy electrons produced with a 21 um Si crystal for
1) random incident ions, 2) (220) planar channeled ions (off-resonance), and 3) (220)

(4.8)

planar channeled ions under the RCE condition (8 = 1.82°). In the Si case, the energy
loss of the convoy electron is significant. The peak position was 8 keV shifted to the
lower energy side, and the spectrum became broader due to the multiple scattering. The
energy loss of the incident ion is at most 0.025 percent even for random case, which can
be neglected compared with that of the convoy electron. Calculated energy loss of
electron with the energy of 214 keV is [l 1 keV. Considering the ionization mean-free-
path (3.3 um), effective thickness is reduced to [118 pum, and the energy loss of electron
becomes to [D.5 keV. Therefore, the experimental peak shift of 8 keV is reasonable. A
peak shift of the spectrum for channeled ions (off-resonance) was 5 keV, which is
smaller than that of the random case. The 5 keV-energy loss corresponds to the path
length of (10 um for free electron, i.e., incident Ar'"" ions were ionized after (10 pm
path. However, the ionization mean-free-path of channeled Ar'”" ions is estimated to
[(BO um from the experimental result of survived Ar'”" fraction under the channeling
condition. The result indicates most of the Ar'”" ions keep their incident charge state
after (10 um path. This inconsistency is possibly explained by the electron diffraction
effect. The above discussion about the energy loss is for random incident electron.
When the convoy electrons travel along the channel plane, the 5 keV-energy loss can be
attributed to the abnormal absorption due to the electron diffraction (see appendix2),
because the number of the quantum state, n,, given by Eq.(A.19) is ~0.4 for 214 keV
electron. Under the RCE condition, the shift of the spectrum increased to 7 keV, because
the ionization mean-free-path of 15 pum estimated from the experimental result is
smaller than that for off-resonance. Similar to the off-resonance case, the 7 keV-energy
loss corresponding to the [13 pm path for random electron may contain the electron
diffraction effect. The intensity of convoy electrons increased, and the spectrum became
sharper (FWHM [17 keV) compared with the off-resonance case ([22 keV). This result
agrees with the theoretical prediction in Ref.[59] that the width of the cusp shape for
convoy electrons from 2s or 2p, state is narrower than that from the ground state,
because the ionization from n = 2 states increases under the RCE condition.
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The intensity of convoy electrons at the peak position for the RCE condition (6 =
1.82 °) was plotted as a function of the tilt angle in Fig.4.14. The profile has two-peak
structure similar to the charge state profile. The intensity of convoy electrons under the
RCE condition is two times larger than that for off-resonance. Such a clear resonance
profile for convoy electrons has never been observed in the previous experiments with
lower energy ions [18]. There is a difference at the doublet structure of the J = 1/2 peak,
6 [11.64° and [1.71°, corresponding to Level 1 and 2. The right peak of the doublet (6
[J1.71°) in the charge state profile vanished in the convoy electron profile. The shape of
the spectrum for convoy electrons depends on the initial state of the loss (convoy)
electron. The characteristics of resonance profile for convoy electrons can be attributed
to the composition of the initial states, i.e., n = 2 states, under the channeling condition.
According to the theoretical prediction, the convoy electrons from 2p, state (2p, state in
the present paper) form an “anti-cusp” shape in the energy spectrum. The 2p,
component in Level 2 is much larger than that in Level 1 especially for the large
distance from the channel center (see Fig.2.16). The energy spectrum of convoy
electrons from Level 2 is considered to be broader, and has a lower peak height
compared with that of convoy electrons from Level 1. As a result, the height of the right
peak (6 [1.71°) becomes lower compared with the left peak (6 [11.64°).
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Fig.4.14 Intensity of convoy electron for 21 pm Si crystal as a function of the tilt
angle from [110] axis. Arrows indicate n = 2 states (/= 1/2 and 3/2) in vacuum.
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4.5. Measurement of de-excitation X-rays

4.5.1. X-ray energy spectra

X-ray energy spectra for random incidence, channeling (off-resonance), and RCE
condition (8= 1.82°) are shown in Fig.4.15. The thickness of the adopted Si crystal was
21 pum. Si K X-rays are seen as a peak around 1.7 keV. De-excitation X-rays from Ar
ions are Doppler shifted from 3.3 keV to 5.0 keV. The detection angle of 41° in the
laboratory frame corresponds to 84.4° in the projectile frame, i.e., the observed X-rays
were emitted to the direction almost perpendicular to the beam direction. Although 1s-
2p excitation probability for channeling case is smaller, the intensity of de-excitation X-
rays becomes larger compared with the random incidence, because the 2p-ionization
probability of channeled ions is much smaller, and consequently, excited ions under the
channeling condition decay more via the X-ray emission compared with the random
incidence. Under the RCE condition, the coherent excitation process becomes dominant,
and the intensity of the de-excitation X-rays is further enhanced.
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Fig.4.15 X-ray energy spectra for (a) random incidence, (b) channeling (off-
resonance) and (¢) RCE condition (6= 1.82°).
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4.5.2. RCE profile for de-excitation X-rays

Intensities of de-excitation X-rays measured by the Si(Li)-detectors (H) and (V) are
plotted as functions of the tilt angle from [110] axis in Fig.4.16. Closed and open circles
are the data for the detectors (H) and (V), respectively. The right scale of ordinate in
Fig.4.16 is the number of X-rays per incident ion estimated with an assumption of
isotropic X-ray emission. The X-ray resonance profile shows (1) two-peak structure (J =
1/2 and J = 3/2) similar to the resonance profiles for the charge state and convoy
electrons, (2) much lower height of the J = 1/2 peak compared with the J = 3/2 peak. (3)
disappearance of the doublet structure in the J = 1/2 peak, which was clearly seen in the
charge state profile (Fig.4.7b), and (4) no anisotropy of the X-ray emission.

The feature (1) is due to the level splitting by spin-orbit interaction as discussed in
Sec.4.3.2. The feature (2) can be explained as a dominance of 2s component in Level 1
and 2 as shown in Fig.2.16. Ions excited to 2s state, which has a long lifetime, hardly
decay with the X-ray emission because of the much larger probability of 2s-ionization.
This fact results in the suppression of the J =1/2 peak. On the other hand, 2s state in
Level 3 and 4 is a minor component. Accordingly, the J = 1/2 peak corresponding to
Level 1 and 2 is smaller than the J = 3/2 peak corresponding to Level 3 and 4.

To discuss the feature (3), several mean-free-paths are listed in Table3, and a rough
sketch of probabilities as a function of the distance from channel center is shown in
Fig.4.17. A following discussion is about ionization or de-excitation only from 2p state.
Actually, n = 2 states contain 2s component, but, the difference of the ionization
probability between 2s and 2p states is not so significant, and the radiative lifetime
becomes at most 2 times longer, when the fraction of 2s component is 50 percent.
Therefore, the discussion with mean-free-paths for 2p-ionization, A,,, and for de-
excitation, A,,,, is reasonable. Values of A,,, for the best channeled ion and the
channeled ions with the oscillation amplitude of 0.72 A are [58 and (1.6 um,
respectively. The value of A, is [#.6 pm [83]. It is noted that A, is independent of
the distance from the channel center. For channeled ions with the large oscillation
amplitude, A, is shorter than A,,,, i.e., these ions have a small probability of radiative
decay, although the RCE probability increases as the distance from the channel center
increases. On the other hand, A,,, for channeled ions near the channel center is much
longer than A,,,, and excited ions mostly decay with the X-ray emission. The best
channeled ions excited to Level 1 or 2 correspond to the dip position of the charge state
profile (tilt angle 6 [11.68 °). Because of the dominance of the X-ray emission from the
ions near the channel center, the dip was not formed in the X-ray profile.

The feature (4) can be qualitatively explained as follows. According to the above
discussion, the channeled ions near the channel center mainly contribute to the X-ray
profile. As shown in Fig.2.16, the ratio of 2p,, 2p, and 2p, components in Level 1 and 2
isalmost 1 : 1 : 1 for ions near the channel center. As for Level 3 and 4, the ratio of 2p,,
2p, and 2p, components is not 1 : 1 : 1 for each level. However, the energy difference
between Level 3 and 4 is so small near the channel center (see Fig.2.15) that both Level
3 and 4 are partially on resonance and the X-rays form Level 3 and 4 are mixed in the
right peak. The ratio of 2p(Level 3)+2p,(Level 4), 2p (Level 3)+2p (Level 4) and
2p,(Level 3)+2p,(Level 4) components becomes [11 :1 : 1. Moreover, the probabilities
of RCE to each level can be regarded to be almost equal with each other. As a result, the
anisotropy of de-excitation X-rays from Level 1, Level 2 and J = 3/2 state (Level 3 +
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Level 4) was also not observed.

Assuming that the distribution of the X-ray emission is isotropic in the projectile
frame, the number of radiative decays per incident ion is estimated to be [D.2 at the
right peak (6= 1.82 °) from consideration of the geometrical efficiency of the detector.
The Ar'®" fraction due to RCE increased by 20 percent (from 60 to 80 percent) as shown
in Fig.4.7b. It means that the event numbers of X-ray emission and ionization are
comparable in this case.
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Fig.4.16 Intensity of de-excitation X-rays measured by the two Si(Li)-detector as a
function of the tilt angle from [110] axis. Arrows indicate n = 2 states (J = 1/2 and
3/2) in vacuum. The right scale indicates the number of the X-rays per incident ion.

87



Table3 Mean-free-paths for 2p-ionization, A,,,, radiative decay from
2p, Aoy intra-shell transition from 2s-2p, A,.,,, and a half of the
path length per Rabi oscillation, Az/2, for best channeled ions and the
ions with large oscillation amplitude (=0.72 A).

Best channeled Amplitude = 0.72 A
A 4.6 um 4.6 um
Acasap) 62 um 1.7 pm
Ag/2 6.7 um 0.9 pm
RCE
Radiative decay

Probability

2p-ionization
2s-2p intra-shell transition

Distance from channel center

Fig.4.17 Rough sketch of probabilities of 2p-ionization, 2s-2p intra-shell transition, and
radiative decay and RCE as a function of the distance from the channel center.
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4.6. Monte Carlo simulation of RCE

To understand the RCE phenomena quantitatively, a Monte Carlo simulation was
performed. The time evolution of n = 2 state through coherent processes is described as
in Eq.(2.114). Incoherent processes should be included in the right hand side of
Eq.(2.114) as imaginary parts [13-15]. However, the situation is so complex that it is
difficult to solve Eq.(2.114) rigorously. The distance from the channel center, x, changes
together with the channeling oscillation, and the transition amplitude, M,,(x), is actually
a function of time 7. Moreover, the energy difference between the ground state and an n
= 2 state, E,,,,, also depends on x (see Fig.2.15), i.e., it is also a function of z. Further,
the path lengths of the ion per channeling oscillation and per Rabi oscillation are
comparable. Accordingly, the Rabi frequency varies at every moment, and the transition
probability can not be described as a simple sinusoidal curve as in Eq.(2.121).
Considering only the straight line trajectory, i.e., fixing the impact parameter, is one of
the method to simplify the calculation [15]. In the present simulation, the ion
trajectories were exactly calculated, and the impact parameter dependence of M,,(x) and
E,... Was taken into account. The probability of coherent excitation (de-excitation) was
given at every step, Az, i.e., it was treated as “incoherent-like”, where Az is a step of ion
position along the beam direction.

A flow chart of the simulation is shown in Fig.4.18. If x is constant, the population
probability in one of the n = 2 states for channeled ions at position, x, is given by

4|M 21 (x)| , Q

la 2()| Tsm ?t. (4.9)

Modifying Eq.(4.9), the transition probability from 1s to an n = 2 state per step, Az, was

put as
Wy, (x) = 4M21(X)

Q7 (x)
where f,(Az) is a fitting parameter depending on Az. Eq.(4.10) means that the sinusoidal
increase (or decrease) of the population in the n = 2 state, i.e., Rabi oscillation effect,
was averaged, and the effect was represented by the parameter, f(Az). In the simulation,
a step of the ion position along the beam direction, Az, was selected to be 10d,
(=1.92x107 um) which is (107 of the wavelength of the channeling oscillation, but is
long enough for the ion to feel the crystal periodicity. The parameter, f(Az), is expected
to be 0107, because w,,(x) should be of the order of unity, when the ion passes several
Um (Ag/2). The transition probability from an n = 2 to 1s state is also given by
Eq.(4.10).

As for the incoherent processes, the calculated results of electron impact ionization
and excitation cross sections with the plane wave Born approximation [79] were
adopted. In the simulation, n>3 states were not considered, and excited ions to n=3
states were regarded as ionized. The Is-, 2s- and 2p-ionization cross sections, Oy, Oy,
and g,, were replaced with

= S8 2, (4.10)

ai(ls) = 01(15) O-ex(15an=3) + O-ex(15an=4) + [[HD (4 1 1)
[

01(25) 01(25 + O.ex(Zs—.n=3) + O-ex(25~n=4) + D]ID (4 12)
! —_

0i(2p) - Gi(Zp) O-ex(2p~n=3) + O.ex(2p~n=4) + D]ID (413)

where O, is an excitation cross section. lonization cross sections from an n = 2 state
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were calculated with Eq.(4.12) and (4.13) considering the ratio of 2s and 2p components.
Strictly speaking, the ionization probabilities from 2p,, 2p, and 2p, states are different
from each other, when the spatial distribution of the bound electron and the density of
the target electron flux are considered. However, the difference is not considered to be
so significant, because the orbital radius of electron in 2p state ([D.14 A) is much
smaller than the inter-planar distance (1.92 A). The cross sections for excitation from 1s
to an n = 2 state and for intra-shell transition between n = 2 state were similarly
calculated considering the compositions of 2s and 2p components in each n = 2 state.
Here, the cross section from 2s to 2p and that from 2p to 2s are regarded to be equal.
Following Eq.(2.46) for random incidence, the cross section per atom was written as

Ch, (x)+Z;N(x)O
o) :De(X) s N () . (4.14)
0 N 0
where n.(x) and N(x) are the local electron and nuclear densities, respectively.
The radiative life time of an n = 2 state in the projectile frame, T, is given by
1 |C ’ |czx2+|cz |2+|czz2
LTl M py p , (4.15)
T T T

2s 2p

where T,, and T,, are the life times of 2s and 2p states, which are 3.5x10™ and 1.53x107"

sec, respectively [84,85]. A probability of radiative decay within a time step, At’ (=

Az/v), in the laboratory frame is written as

P = At/yr. (4.16)

An angular distribution of de-excitation X-rays from an n = 2 state was represented as

an average of those fr(;m 2s, 2;),(, 2p, a;nd 2p, states with a consideration of the ratio of
el s fean]

each component, * The angular distribution from 2p

Coy Copx Cypy and |c2pZ
state is in accordance with Eq.(4.1) in the projectile frame, and should be transformed to

the laboratory frame through the Lorentz transformation,

— 2 ]
tang = V1 =P sinb 4.17)
cos@+ 3

where 0 and 6’ are angles in the projectile and the laboratory frames, respectively. The
X-ray absorption within the Si crystal was considered, which depends on the depth of
the position where the ion emitted the X-ray [88].

The angular distribution of the incident beam was represented by a Gaussian
distribution whose standard deviation is equal to the experimental one. The fluctuation
of the incident beam energy (AE/E, = 2.4 x10~*) was also included. The ion which
approached the channel wall closer than the one-dimensional amplitude of the lattice
vibration, u,, was regarded as a random incident ion, and only the incoherent processes
were assumed to take place for random ions.
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Fig.4.18 Flow chart of the simulation for atomic processes of channeled ions
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4.7. Results and discussion

The simulated results of the fraction of ionized Ar'®" ions transmitted through 21
Mm Si crystal for £, = 0.005, 0.001 and 0.0001 are shown in Fig.4.19. The simulated
result for £, = 0.001 is the closest to the experimental result which is given by the solid
line. Although the details of the structure such as the doublet of the left peak (J = 1/2)
was not reproduced, the general feature agrees with the experimental result. Fig.4.19
tells ;

(1) For ;= 0.005 : the fraction of Ar'®" for off-resonance becomes larger, but, that under
resonance conditions does not increase so much compared with the case for £, = 0.001.
As a result, the two-peak (J = 1/2 and J = 3/2) structure was obscured.

(2) For £, = 0.0001 : the fraction of Ar'®" does not reach [BO percent even under
resonance conditions.

These results can be understood as follows. The time evolutions of the population in n =
2 states, P,(f), for several values of f, and for on- and off-resonance are shown in
Fig.4.20. For f, = 0.001, P,(¢) for on-resonance is close to 0.5, and that for off-resonance
is much smaller than 0.5, when the ions pass through the crystal (¢’ = ¢, = z,/v), where z,
is the target thickness and v is the ion velocity. For f; = 0.005, however, the value of P,
(¢,) 1s close to 0.5 even for off-resonance. For on-resonance, the reiteration of RCE and
RCD becomes quite frequent, but the value of P,(#,) does not exceed 0.5, and further
enhancement of Ar'®" fraction did not occur. This situation led to the result (1). On the
other hand, for f, = 0.0001, the value of P, () is much smaller than 0.5 even for on-
resonance, and this causes the result (2).

The simulated results of resonance curve for X-rays are shown in Fig.4.21. The
two-peak structure and the suppression of the left peak reproduce the experimental
result quite well. The isotropic distribution observed in the right peak is also reproduced
in this simulation, and that in the left peak remains slightly. The X-ray intensity is 1.5
times larger than the experimental result, but the agreement is considered to be
satisfactory. The X-ray intensity in the lower energy part of the left peak (8= 1.6° —
1.65°, corresponding to Level 1) is slightly smaller than the experiment. As for the
simulated result of charge state distribution (Fig.4.19), the left peak of the doublet
structure (corresponding to Level 1) did not appear. In other words, both ionization and
de-excitation from Level 1 occur with a larger probability than the simulation.

Fig.4.22 shows event numbers per unit length of RCE and RCD as functions of the
distance from the channel center, x, for channeled ions with the oscillation amplitude of
0.72 A, which is injected into the crystal in parallel to the channel plane, under the
resonance condition of 8= 1.82°. The result shows that most part of the RCE process
occurs near the turning point of the ion trajectory, which was also revealed by the
measurement of the impact-parameter dependent RCE in Sec.4.3. The event numbers
per unit length of RCE and RCD processes as functions of the ion position along the
beam direction, z, have structures as shown in Fig.4.23a. It is related to the oscillatory
trajectory of the channeled ions. When the ion approaches the turning point of the
trajectory, the RCE probability increases because of the increase of the crystal field. The
probability takes the maximum and minimum values at the turning point and the
channel center, respectively. Sharp dips in Fig.4.23a correspond to the position, z, that
the ions are at the channel center. The event numbers of 1s-ionization and ionization
from n = 2 states are shown in Fig.4.23b. They have a clear oscillation structure, and the
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frequency corresponds to that of the oscillation of the ion trajectory, because the
ionization probability has the maximum value every time that the ions approach the
turning point where the electron and nuclear densities are the largest. As the result of the
competition with 1s-ionizations, the event number of RCE decreases near the turning
point, because the slope of the increase of 1s-ionization is steeper than that of RCE, and
ions in the ground state are ionized before the RCE occurs. Therefore, small dips in
Fig.4.23a correspond to the turning points.

Fig.4.24 shows the event numbers per unit length of RCE, RCD, 1s-ionization,
ionization from n = 2 states, intra-shell transition between n = 2 states and radiative
decay as functions of x for channeled ions with all trajectories. The event number of
RCE and RCD have a peak at x [D.4 A, although RCE and RCD probabilities for
channeled ions with larger oscillation amplitude are larger. This is due to the
competition with ionizations from 1s and n = 2 states, which have the large probability
(event number) at the large distance from the channel center as shown in Fig.4.24b.
Most of the intra-shell transition occurs near the channel wall similar to the ionization
from 1s and n = 2 states. On the other hand, de-excitation X-rays are mostly emitted
from the ions at the region of x < 0.5 A where the ionization and intra-shell transition do
not occur too much. It means that the intra-shell transition, which tends to stir the
composition of 2s, 2p,, 2p, and 2p, in the initial excited state, scarcely affects the X-ray
resonance profile. In fact, the observed X-ray profile (Fig.4.16) keeps the information of
the initial excited state, i.e., the left peak becomes smaller than the right peak. This
simulated result supports the discussion about the experimental X-ray profile in Sec.4.5.

Event numbers per unit length of RCE, RCD, ls-ionization, ionization from n = 2
states, intra-shell transition and radiative decay as functions of z for channeled ions with
all trajectories are shown in Fig.4.25. The event numbers of RCE and RCD reflect the
evolution of the population in the ground and n = 2 states, respectively. It is noted that
70 percent of the RCE processes occur in the region of 10 pm from the entrance surface.
The oscillation structure of the event number of RCE due to the ion trajectory, which is
seen in the case of a single trajectory (Fig.4.23a), disappears as a result of the averaging
for all trajectories. On the contrary, the oscillation structure of ionization remains in the
shallow region because of the strong dependence on the ion position. The 1s-ionization
and n = 2 ionization (or intra-shell transition) also reflect the evolution of the population
in the ground and n = 2 states, respectively, as well as the effect of the ion trajectory,
and they mostly occur near the entrance surface similar to the RCE. However, the
radiative decay does not have a significant z-dependence. It means that the charge state
and the convoy electrons present the information on the RCE occurred closer to the
entrance surface, and the X-rays contain that on the RCE occurred in the whole region
of the crystal.
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Fig.4.20 Time evolution of probability that the ion exists in n = 2 states for several
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5. Summary

5.1. Channeling experiment
Energy depositions of 290 MeV/u C*" ions and 390 MeV/u Ar'”* ions in a Si crystal
for random incidence and under [110] axial and (004), (220) and (111) planar

channeling conditions were measured adopting a totally depleted silicon detector (SSD)
as a target crystal. The energy depositions of the [110] axial, and (004), (220) and

(111) planar channeled C* ions in 524 pm Si crystal were reduced to 5.8, 7.7, 6.6 and

5.2 MeV, respectively, compared with 11.8 MeV for random incidence. The angular
divergence of transmitted ions under the channeling condition became smaller
compared with the random incident case. A calculation of the energy deposition of
planar channeled ions was also performed adopting a stopping power formula based on
the Lindhard’s theory. A fitting parameter, f, in the formula was selected so that the
peak position agrees with the experimental result. The shape of the simulated energy
deposition spectra well reproduced those of the measured spectra. In the calculation, an
effect of escaped electrons produced by the collision with the projectile, ie. the
difference between the energy loss and the energy deposition, was taken into account,
which was evaluated from a Monte Carlo simulation for a random incident case. This
effect amounts to 16 percent of the energy loss for 390 MeV/u Ar ions with 19.4 pm Si
target. The relation between the energy deposition and the oscillation amplitude of the
channeled ion was also obtained from the calculation.

A charge state distribution of Ar ions transmitted through 94.7 pm crystal under
the channeling condition was also measured. For random incidence, most of the incident
Ar'™ ions were ionized, but, a fraction of survived Ar'”" ions increases to 20 percent for
(220) planar channeling case. At the same time, energy depositions of Ar ions with the

exit charge of 18+ and 17+ (charge-frozen) were measured.

5.2. Observation of RCE

Resonant coherent excitation (RCE) from Is to n = 2 states of 390 MeV/u
hydrogen-like Ar ions planar channeled in a Si crystal was observed through
measurements of the charge state distribution, convoy electrons and de-excitation X-
rays. By measuring the energy deposition in coincidence with the charge state of
transmitted ions, the impact-parameter dependent RCE profile was obtained, which
reflects the energy level splitting of n = 2 states. A splitting between Level 3 and 4 is so
narrow that they were not resolved in the experiment. The profile shows that the RCE
probability becomes larger as the increase of the oscillation amplitude, and the RCE
occurs mainly near the turning point of the ion trajectory. The resonance profiles for
convoy electrons and de-excitation X-rays were also obtained, which have different
features from that for the charge state. This result reflects the nature of n = 2 state which
are the linear combination of 2s, 2p,, 2p, and 2p, states. The dominance of 2s state in
Level 1 and 2 resulted in the suppression of the left peak for the X-ray profile. The
anisotropy of the de-excitation X-ray emission was not observed through the
measurement by two detectors located on the horizontal and vertical planes to the
channel plane. It can be explained as follows. Only the channeled ions with the small
oscillation amplitude contribute to the X-ray profile, because the ionization process is
dominant near the channel wall. The fraction of 2s, 2p,, 2p, and 2p, components in
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Level 1, Level 2 and the state of J = 3/2 (Level 3 and 4) is almost 1 : 1 : 1 near the
channel center. Therefore, only an isotropic distribution of X-rays can be observed.

A Monte Carlo simulation for atomic process of the channeled ions under the RCE
condition was performed. The probability of the coherent process was given at each step,
that is, the process was treated as “incoherent-like”. However, the transition probability
and the transition energy, which depend on the ion position, were included calculating
the ion trajectory exactly. As a result, a good agreement with the experimental
resonance profiles for charge state and de-excitation X-rays was obtained. By the
simulation, it was confirmed that most of the RCE take place near the entrance surface.
Moreover, the simulation indicates that the radiative decay primarily occurs in a region
of x < 0.5 A, and the intra-shell transition which tends to stir the composition of 2s, 2p,,
2p, and 2p, components mostly occur in a region of x > 0.5 A. That is to say, the intra-
shell transition has no effect for the X-ray profile, which supports the above discussion
about the experimental result.

In the present experiment, the energy level splitting of n = 2 states (/= 1/2 and J =
3/2) was clearly observed. The measured resonance peak width is 0.94 eV, which is
mainly due to the energy fluctuation and the angular divergence of the incident ion.
Using the fitting by the Gaussian shape to the resonance peak, the transition energy can
be obtained with a precision of 0.04 eV, if the absolute ion energy is determined with
the precision less than 2.3 x 10~°. This measurement has a possibility to give a new
method of the atomic spectroscopy, e.g., the determination of the 1s Lamb shift, in the
high precision.

100



Appendix

1. Derivation of relativistic Bethe’s stopping power formula
Bethe extended his stopping power formula for relativistic ions. Applying the first
Born approximation, the differential cross section in Eq.(2.3) is rewritten as

o 2t B |Fo (K|
B ? lgpz(1+Q/2mcz)2

+ wt B;no(K)| %_’_ 0 E]Q, (A1)
[0(+0/2me*) =(E, = E,)* [2me* T B3 me* O

where B, = B - (B-K)K/K is the component of B perpendicular to K, B=v/c,
F(K)= <n|z exp(iK [#,)|0), (A.2)
J

G, (K)= z (na; exp(iK [#,)|0), (A3)
J
a, is a relativistic current operator for the j-th electron. In the relativistic calculation, the
relation between the variable, O, and momentum transfer, 7K, is modified as
K% =2mO(1+0/2mc?), (A.4)
and the maximum and minimum energy transfers, Q, .. and Q, ., are given by

max mind

Qmax = 2mU2V’ Qmin= (En_ 0)2/2m U29 (AS)

In the same way as the non-relativistic calculation, the range of Q for the
integration is divided into two parts by the value of Q,. For small Q range, 0,,,<0<0,,
the matrix elements, F,,(K) and G,,(K), can be approximated as

2
(n> 5000 (A.6)
B, G, ('~ B (E, - £ [(n]3 v Jo] /e, A7)

where x; and y, are coordinates of the j-th electron in the directions of K and S,
respectively. Substituting Eqs.(A.6) and (A.7) into Eq.(A.1), we obtain

|F o (K ~K?

s+ 2 LS R Ol
mv E Q (Q - B Qmin ) E
_azie' Jolz sl Bl 2o 0= | B s
h-v B 0 (1-B°X) E
where the approximation of O<<mc” is used, and 3 can be written as
Bl =B*(1-02. /0%). (A.9)

The parameter X = Q,,,,/O is introduced in Eq.(A.8), where the range of integration of X
is from Q,,,/O,(~0) to 1. Then, the stopping power from the range of Q,,,<O<Q, is
given by
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SQ<Q0 = NZ (E, —E, )IdOFB
2 4 2
_2rVZ, 2Zze %n 2mv2 0, ol
mu 0 1 1-B8
For large QO range, 0,<0<Q..... the electron in the initial state can be regarded as a
free electron, and the variable, O, corresponds to the energy transfer from the ion to the

electron. Adopting the Dirac wave functions averaged for up and down spin orientations
into Eq.(A.2) and Eq.(A.3), the matrix elements are

1+0Q/2mc?
1+0/mc?

2 o Q/2mc2
B, G, (K)|" 0B, T+ 0/me® (A.12)

In this QO-range, 3 can be written as
2 2 Q/ 2mc’
= -——— . A.13
Bo=p 1+0/2mc’ (A1)
With the substitution of Eqs (A.11)—(A.13), Eq.(A.1) results in
21zt e’
dO = ' - A.14
T om?Q? 2mv 2y E’Q (A9
where the second term of Eq.(A.14) is originated from the electron spin. The stopping
power from the range, 0,<0<0Q.,..., is obtained as,

0
~-B’0 (A.10)
0

IF, 0(K)| 0 (A.11)

max?

Sy, =N ﬁ S (B, -E,)do,,,

2 4
_2rVZ, 2Zze 2mv’ y _ g2 E (A15)
muv
Summing Eq.(A10) and Eq.(Al 5), the total stopping power becomes
2 4 2.,2
§ = NI Zze Enzm” y —/32% (A.16)
muv 1

which is called “relativistic Bethe’s formula”.

2. Channeling of electrons

In the case of the channeling of ions, a classical treatment can be applied. However,
it is not always possible to define the classical trajectory for channeled electrons
because of the large de Broglie wave length. The number of the quantum state for the
particle bound to the channel plane is given by

1
ny = f s

- % L""/ " [2MU, (), (A.17)

where p(x) is the momentum component along x-axis, and M is a mass of channeled
particle. Approximating the planar potential, U,/(x), as the harmonic oscillator type
potential with using the relation of Eq.(2.62), U,(x) is expressed as
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EY,

U,(x) =——x". (A.18)
TF
Substituting Eq.(A.18) into Eq.(A.17), the number of the quantum state is derived as
dZ
- iy (A.19)
2hay

In the case of axial channeling, the number of the state is given by

na = nplnp?_a (A20)

where n,, and n, are the numbers of the quantum state for planar channelings that the
planes including the noticed axis are orthogonal. The trajectory of the channeled particle
can be classically defined for 7, (or n,) much larger than unity. If n, (n,) approaches to
unity, the electron diffraction effect becomes important. Spatial distributions of
transmitted (a)2.43 MeV protons along Ge <111> axis and (b)1 MeV electrons along Cu
<111> axis are shown in Fig.A.1. We can see the characteristic “star pattern”, which is
seen for classically channeled particles, in case (a). On the contrary, the diffraction
pattern appears in the case (b). The numbers of the quantum states for the case (a) and
(b) are 100 and [11.6, respectively. The value for the classification between the
channeling and the diffraction was determined to n, [B from the experimental results,
which depends more or less on the kind of axis [89].

The electron penetrating a crystal is described as the linear combination of the
Bloch waves. For high energy electron, i.e., n, or n, >>1, many Bloch waves are excited,
and the classical description is permitted. Planer potentials for positron and electron are
shown in Fig.A.2. The potential dip for positrons is inverted to the potential peak for
electrons. Therefore, channeled electrons with small oscillation amplitudes spend a long
time near the channel wall, and loose more energies compared with the random incident
case. On the contrary, the energy loss of channeled electron with large oscillation
amplitudes is smaller that that for random incidence. For low energy case, i.e., n, or n,
<1, only two Bloch waves are effectively excited [90,91]. One of them has nodes on the
channel wall, and the other has nodes on the channel center. The former and the latter
result in the abnormal transmission and absorption, respectively.
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Fig.A.1 Spatial distributions of transmitted (a)2.43 MeV proton along Ge <111> axis
and (b)1 MeV electron along Cu <111> axis.

Fig.A.2 Planar potential for (a) positron and (b) electron.
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