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Precision Spectroscopy of Muonium Ground-State

Hyperfine Structure at Very Weak Magnetic Field

Yasuhiro Ueno

Abstract

Muonium is the bound state of a positively-charged muon and an electron, a

hydrogen-like atom. Unlike hydrogen atom, muonium is free from the internal struc-

ture of the proton, and one can calculate its energy levels precisely. Hence muonium

is one of the best probes to test the bound-state Quantum Electrodynamics (bound-

state QED).

In this thesis, we present a new precision measurement of the muonium hyperfine

structure interval (MuHFS) at the Japan Proton Accelerator Research Complex (J-

PARC), Materials and Life science Facility (MLF). The new experiment is called

Muonium Spectroscopy Experiment Using Microwave (MuSEUM). By using the

intense pulsed muon beam at J-PARC, MuSEUM ameliorates the statistics. This

thesis focuses on recent achievements in the measurement of MuHFS at a very weak

magnetic field.

In this measurement, the shift of MuHFS frequency due to the collision with

krypton atoms is one of the dominant sources of systematic uncertainty. We de-

veloped a new microwave cavity and succeeded in the measurement of MuHFS at

lower krypton gas pressure (0.3 and 0.4 atmospheres) than the precursor experi-

ments, without significantly losing statistics. Combined with the previous data at

1.0 atmosphere, we determined the MuHFS frequency in vacuo and the result is

∆νfit = 4.463 3055(23) GHz.

The result is consistent with the results of precursor experiments and the theoretical

calculation. This result is mainly limited by lack of statistics, and the measurement

with unprecedented precision is feasible with improvements of the accelerator which

is ongoing at J-PARC.
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Chapter 1

Introduction and Overview

The observation of the Higgs boson in the experiments at the Large Hadron Collider

(LHC) [1, 2] completes the hunt for the predicted particles in the Standard Model

(SM) of particle physics. The discovery of the Higgs boson is another great triumph

for the SM, experimentally verifying the mechanism of the spontaneous breaking of

the electroweak symmetry. The SM is, however, known to be incomplete; it does

not contain the gravitational interaction, and it fails to explain some observed facts

such as the existence of the dark matter and the baryon asymmetry in the Universe.

Many experiments searching for a sign of physics beyond the Standard Model are

ongoing. A statistically significant sign of new physics, however, is yet unseen.

Quantum Electrodynamics (QED) is one of the most important pillars of the

SM and has been tested most precisely. One of such tests is measurements of

electron magnetic moment [3], with a precision of 0.28 ppt (parts per trillion, 10−12).

The combination of the experimental result and QED calculation extracts the fine

structure constant, α with a precision of 4 × 10−10, and the obtained result agrees

reasonably well with the other measurements of α, although a recent measurement

of α using the recoil frequency of Cs-133 atoms in matter-wave interferometry [4]

found 2.5 σ discrepancy between its result and the result from the electron magnetic

moment.

While the QED well describes the electron magnetic moment, muon anomalous

magnetic moment (g -2) has taken researchers attention since the measurement at

the Brookhaven National Laboratory (BNL) found more than 3σ discrepancy from

the SM [5]. Despite the intensive effort made both from the experimental side and

theoretical side since then, this discrepancy remains to be an unsolved problem. If

this discrepancy is confirmed with further statistical confidence through new experi-

ments, the result will be the key to understand the new physics. As described in the

following section, this muon g -2 is of particular relevance with muonium hyperfine

structure spectroscopy.

Speaking about bound states, hydrogen spectroscopy had been one of the essen-

tial aspects in the advent of modern physics, such as the confirmation of the Bohr

12



CHAPTER 1. INTRODUCTION AND OVERVIEW

model [6], Dirac equation [7], and the observation of the Lamb shift as the first ex-

ample of the pure-QED effect [8, 9]. Several experimental results with high precision

had been published both in optical and microwave regime [10, 11, 12]. Although the

test of the bound-state QED is limited by the internal structure of the proton, the

extracted values of the proton charge radius and the Rydberg constant had agreed

with each other, until the laser spectroscopic results of muonic hydrogen (p + µ−)

emerged: the result indicates the proton charge radius is deviated from the average

value of the electronic hydrogen results by 7σ [13, 14]. Many theorists have reex-

amined the QED calculations for both systems, and two improved spectroscopies

of hydrogen [15, 16] have been published, but the definitive interpretation of the

discrepancy has not been found and this ”proton-radius problem” remains.

Unlike hydrogen atom, muonium is free from the internal structure of the proton,

and it is one of the best probes to test the bound-state QED. In this chapter, we

introduce a new precision measurement of the muonium hyperfine structure interval

at the Japan Proton Accelerator Research Complex (J-PARC), Materials and Life

science Facility (MLF). The new experiment is called Muonium Spectroscopy Ex-

periment Using Microwave (MuSEUM). We also explain the historical background

and the physical motivation for the new experiment.

1.1 Muonium Hyperfine Structure

Muonium (Fig. 1.1) is the bound state of a positive muon and an electron. In the

Standard Model (SM) of particle physics, muon and electron are treated as struc-

tureless particles. Unlike ordinary atoms such as hydrogen, muonium is free from

the finite size effect of nucleons, and its energy levels can be calculated very pre-

cisely. By comparing the experimental result of the muonium ground-state hyperfine

structure (MuHFS) spectroscopy and the theoretical calculation, one can test the

bound-state QED with high precision.

MuHFS is the energy according to the muonium spin state caused by the spin-

spin interaction between the muon and the electron. We denote the frequency cor-

responding to MuHFS by ∆ν. The theoretical value of MuHFS has been calculated

as [17]

∆νth = 4.463 302 868(271) GHz (1.1)

with a relative uncertainty of 61 ppb (parts per billion, 10−9)1. The uncertainty

above mainly comes from the uncertainty of the input parameter mµ/me for QED

calculation.

1Recently, we noticed there is a paper claiming the uncertainty above is mistakenly estimated

smaller [18]. They claim the correct uncertainty should be 523 Hz (120 ppb). Here, we use the

value from [17] throughout this thesis, however, it does not affect the discussion below.

13
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Figure 1.1: Muonium is the bound state of a positive muon and an electron.

There are two major ways of the MuHFS measurement, at a very low field and

in a high field, as shown in Fig. 1.2. The most precise measurement in high field in

1999 [19] is

∆νHF = 4.463 302 776(51) GHz (12 ppb). (1.2)

For the very low field measurement, the result by a precursor measurement con-

ducted in 1975 [20] is

∆νLF = 4.463 3022(14) GHz (300 ppb). (1.3)

The primal source of the uncertainties of both measurements comes from the statis-

tics. Both measurements used the muon beam at the Los Alamos Meson Physics

Facility (LAMPF). Note in passing that the two measurement methods have dif-

ferent sources of systematic uncertainties, thus combining these two measurements

may claim a more reliable result. In this thesis, we focus on the measurement at a

low field, as explained in the following sections.

1.2 Physical Motivations

There are several motivations for the new muonium hyperfine structure measure-

ment. First, the MuHFS is one of the few ideal probes to test the bound-state QED,

because muonium is free from the finite size of a nucleon. Second, through the spec-

troscopy of MuHFS, one can determine the muon magnetic moment, which is an

important input parameter for muon g -2 experiments using a muon storage ring.

The muon g -2 is known for a 3.5σ discrepancy between the theoretical calculation

based on the SM and the experiment [5, 21]. Furthermore, since muonium is a clean

system, the comparison between the theory and experimental result contributes to

other searches for the beyond standard model physics.
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Figure 1.2: Breit-Rabi diagram of the ground-state muonium hyperfine structure.

Muonium energy levels are labeled as 1, 2, 3, 4 in descending order from the highest

energy to the lowest energy. This labeling is valid throughout this thesis. There are

two measurement methods, high-field, and low-field, and we focus on the low-field

measurement in this thesis.

1.2.1 Test of the Bound-State QED

The first motivation of the MuSEUM is a test of the bound-state QED. QED is one

of the fundamental theories of the Standard Model, and testing its validity is one of

the most important parts of the development of modern physics. Some systems can

be used to test the bound-state QED as shown in Fig. 1.3. Here, we summarize the

status of the experimental and theoretical values of HFS for these systems.

Such pursuit of the precision test of bound-state QED began with spectroscopy

of the hydrogen atom, but despite the remarkable experimental precision of the

hydrogen hyperfine structure, the precision of the theoretical calculation is limited

by uncertainty which comes from the internal structure of the proton. The current

experimental value of the hydrogen hyperfine structure with a notable precision of

2 ppt (parts per trillion, 10−12) [10, 22] is

∆νHexp = 1.420 405 751 7767(3) GHz (1.4)

and its theoretical calculation [23] is

∆νHth
= 1.420 405 11 (97)(140) GHz (1.5)

where the first uncertainty comes from the internal structure of the proton and the

second uncertainty is the combined uncertainty from all the other contributions.
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Figure 1.3: Current experimental and theoretical status of the hydrogen-like atoms

in the view of bound-state QED test

The uncertainty of the theoretical calculation is 1 ppm (parts per million, 10−6),

which is a factor of 106 larger than the precision of the experimental value.

As mentioned above, muonium is the ideal system for testing the bound-state

QED since it is made of only leptonic point-like particles. The theoretical calculation

of the muonium hyperfine structure is

∆νth = 4.463 302 868(271) GHz (1.6)

and it is limited by the uncertainty of the input parameter, mµ/me. Future ex-

periments, for instance, muonium 1S-2S spectroscopy proposed at Paul Scherrer

Institute [24] can improve the experimental precision of mµ and also improve the

theoretical calculation of the MuHFS.

Another purely-leptonic system for testing the bound-state QED is positronium,

which is the bound state of a positron and an electron. The theoretical calculation

[25] is

∆νPsth = 203.391 90 (25) GHz (1.7)

with a relative uncertainty of 1 ppm, a factor of 15 larger than that of muonium.The

theoretical precision is mainly limited by the recoil correction due to the equal mass

of positron and electron. The result of the most recent experiment [26] is

∆νPsexp = 203.3942 (16)(13) GHz (1.8)

where the first uncertainty is statistical and the second uncertainty is systematic.

The precision of the experimental and theoretical values of the hyperfine struc-

ture in the three systems mentioned above is summarized in Fig. 1.3. Muonium is

the most suitable system for comparing the theory and the experiment due to the

fairly high precision of both experiment and theoretical calculation.
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1.2.2 Contribution to Muon g -2

Figure 1.4: Comparison of the experimental and theoretical values for aµ [21]. The

SM predictions are taken from: JN 2009 [27], HLMNT 2011 [28], DHMZ 2011 [29],

DHMZ 2017 [30].

Another important feature of the new muonium hyperfine structure measure-

ment is an improved determination of the muon magnetic moment, µµ. This is an

important input parameter of a muon storage ring experiment for determination of

muon anomalous magnetic moment,

aµ =
g − 2

2
. (1.9)

The muon g -2 is known for the discrepancy between the experimental value [5]

obtained at BNL and the theoretical value calculated from the SM [21, 27, 28, 29, 30].

The discrepancy corresponds to more than 3σ in terms of the uncertainty (Fig. 1.4),

and the discrepancy has increased [31]. If the discrepancy is conclusive, it implies

the existence of physics beyond the standard model.

To confirm the discrepancy at a more reliable level, two new experiments were

proposed to measure aµ with improved precision. One experiment has started to

take data at Fermi National Accelerator Laboratory (Fermilab) [32] using the same

magnet of the previous experiment at BNL. The other experiment at J-PARC em-

ploys a novel technique of ultracold muon beam to measure aµ in a different way,
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which can reduce systematic uncertainty [33]. The current precision from the BNL

experiment is 540 ppb (parts per billion). The two experiments aim to measure aµ

with a precision of 100 ppb.

The key point of the future storage ring experiments is that they need an external

parameter λ = µµ/µe to extract aµ from the their experimental result, R, according

to the relation

aµ =
R

λ−R
. (1.10)

The λ parameter can be determined from the MuHFS measurement, and there

are two different ways of determination. The first one is a determination under

the assumption that the bound-state QED calculation of MuHFS is correct. By

comparing the experimental result of ∆ν and the theoretical expression of the ∆ν

including the muon-electron mass ratio mµ/me, one can determine mµ/me. Once

mµ/me is determined, λ = µµ/µe can be determined easily since the mass of the

electron (muon) is related to the magnetic moment of the electron (muon) by the

g-factor, which is precisely known.

The second way of the determination is to use the Zeeman effect of the muonium

under an external magnetic field, and measure two different energy levels of the

Zeeman sub-levels, namely ν12 and ν34. The applied magnetic field can be precisely

measured by Nuclear Magnetic Resonance (NMR) of a proton in pure water. The

difference between the two is proportional to the ratio of the muon and proton

magnetic moment,

ν12 − ν34 ∝
µµ

µp

. (1.11)

The analysis of the recent g -2 experiment employed the magnetic moment ratio

µµ/µe from the determination with the assumption of the bound-state QED calcu-

lation is correct. The value is cited from the most recent MuHFS experiment at

LAMPF [19] in the high field, with a precision of 25 ppb. If one uses the determi-

nation without the assumption, the result obtained at the LAMPF experiment is

µµ

µp

= 3.183 345 13 (39) (1.12)

with a precision of 120 ppb.

As mentioned above, future experiments aiming to measure the aµ with a preci-

sion of 100 ppb are ongoing. In the situation of the existence of such contradicting

values from the experiment and the SM theory, it is more secure to extract the aµ

from the new storage ring experiments without the assumption that the bound-state

QED calculation is correct. The current precision of 120 ppb by the second way of

determination without assumption is not sufficient to fully exploit the results of

the two new experiments. The new spectroscopy of MuHFS can contribute to this

program, by determining the µµ/µe with a precision of the order of 10 ppb.
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1.2.3 Other Motivations

Test of Lorentz/CPT Invariance

There are several other motivations, except the two explained in previous sections,

for the new measurement of the MuHFS. One is the test of Lorentz/CPT invariance

using a theoretical framework called the Standard Model Extension (SME) [34, 35].

If there is a Lorentz violation, there is a Lorentz field in a certain direction in a

celestial frame of reference. If there is a non-zero angle between the certain direc-

tion and the muon spin, the MuHFS frequency would be slightly shifted. Since the

laboratory rotates with the Earth, the angle varies with time, as shown in Fig. 1.5.

As a consequence, the MuHFS frequency oscillates as the Earth rotates. Therefore

one can expect the oscillation of the frequency in one sidereal day (Fig. 1.6). Some

parameters in the SME are constrained by the result of the precursor experiment

(Fig. 1.7)[36]. The new precision measurement of MuHFS will improve this con-

straint and also make some new constraints on other unconstrained parameters by

searching for the annual oscillation of ∆ν due to the Earth’s revolution, which the

precursor experiment did not measure.

Exotic Particle Search

A new measurement of the MuHFS can contribute to the other exotic particle search.

One such example of the search is a light Boson with an ultraweak coupling [37].

Spectroscopy of the hyperfine structures of various atoms can search for such a par-

ticle. Figure 1.8 shows the parameter space of the boson and the current constraint

on the parameters. The horizontal axis shows the interaction length of a new par-

ticle and the vertical axis shows the coupling constant. The dashed lines are the

constraint from 1S HFS from various atoms. As shown in the figure, muonium sets

the current best limit, meaning a more precise result of MuHFS spectroscopy can

constrain the broader range of the parameter space. There are also solid lines which

indicate the constraint from the combination of the two different spectroscopic re-

sults of the same atom, D21. Here, D21 = 8f(2S HFS)−f (1S HFS) where f(nS HFS)

is the frequency of the nth-state HFS. D21 is a useful parameter for the comparison

of the theoretical and experimental result by cancelling out the contribution from

the internal structure of nuclei.

Recently, it is suggested that MuHFS is the best system for probing an exotic

long-range force arising from the exchange of a pair of neutrinos [38]. A rough

estimate suggests that MuHFS spectroscopy with a precision of 2 Hz (0.4 ppb) can

distinguish such a force mediated by a pair of the SM neutrinos. The required

precision is beyond the scope of the current status of the experiment, but a future

facility with a more intense muon beam may be able to contribute to this program.
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Figure 1.5: Search of CPT/Lorentz violation. The Lorentz violating field is ex-

pressed as ~b. The angle between ~b and the spin direction ~B varies as the Earth

rotates.

Figure 1.6: Expected sidereal oscillation of the MuHFS frequecny due to the Lorentz

violation.
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Figure 1.7: Signal obtained by the precursor experiment [36].
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Figure 1.8: The constraint on the parameter space of a light boson with an ultraweak

coupling [37]. Horizontal axis is the interaction length and the vertical axis shows

the coupling constant. Muonium is the best probe in the case of the new particle

mass is more than a few keV. Here, D21 = 8f(2S HFS)− f (1S HFS).
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Muonium-antimuonium Conversion

This experiment also can be used for the search for the charged lepton flavor viola-

tion, which has never detected before. Potential muonium(µ+e−)-antimuonium(µ−e+)

conversion would shift the MuHFS frequency due to the mixing of the ground states

of the muonium and the antimuonium [39]. If there is no external field, the shift

amounts to

δνMuMu(nS) =
519

n3
×

GMuMu

GF

 Hz (1.13)

where GMuMu is the coupling constant for effective four-fermion interaction, and GF

is the Fermi coupling constant. Based on the present limit of GMuMu [40], the shift

is less than 1.5 Hz, which is beyond the scope of the current precision but can be

approached by the experiments with more statistics in the future. Note that if there

is a strong external field the effect would be reduced [41], so a measurement in the

low field is desirable for this purpose.

1.3 Overview of the Precursor Experiments

Since V. W. Hughes and his colleagues confirmed muonium formation and measured

its Larmor precession frequency in 1960 [42], research groups at Yale and Chicago

have made a series of measurements of the muonium ground-state hyperfine structure

interval. The history of the measurements is summarized in Table 1.1. The most

recent experiments in the high field and at the low field were conducted at the Los

Alamos Meson Physics Facility (LAMPF). The experimental setup of the precursor

experiments is shown in Fig. 1.9. The muon is injected into a noble gas such

as krypton to produce muonium, and microwave in cavity induces the hyperfine

transition. The summary plots of the experimental results by precursor experiments

are shown in Fig. 1.10 and 1.11.

The dominant source of the uncertainty in the precursor experiment was the lack

of statistics. LAMPF’s muon beam intensity was 107 muons per second at the time

of the experiment published in 1999. In order to use an effective analysis method

called ”old muonium” method, they chopped the muon beam. The discussion of

the method in detail will be presented in the latter section. After the chopping, the

beam intensity was 2×106 muons per second. The statistics can be improved by the

muon beam at J-PARC. The maximum muon available in future is 108 muons per

second, and the current intensity (5× 106 muons per second) has already surpassed

the LAMPF intensity.

As the statistical uncertainty is suppressed, systematic uncertainty becomes im-

portant for realizing more precise spectroscopy. One of the most important sources

of systematic uncertainty is the collision between the muonium and Kr atom, which
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Table 1.1: MuHFS determined from the precursor experiments. The items in bold-

face indicate the most recent measurements in high field and at low field.

published year method value [GHz]

1964[43] low field 4.463 18(12)

1966[44] high field 4.463 150(60)

1969[45] low field 4.463 260(40)

1969[46] high field 4.463 317(21)

1970[47] high field 4.463 3022(89)

1973[48] low field 4.463 3040(18)

1975[20] low field 4.463 3022(14)

1977[49] high field 4.463 302 35(52)

1982[50] high field 4.463 302 88(16)

1999[19] high field 4.463 302 765(53)

shifts the MuHFS frequency. Precursor experiments measured MuHFS at differ-

ent Kr pressures, and extrapolated the results to obtain the MuHFS frequency in

vacuo. The most recent measurement in the high field was conducted in 0.8 atmo-

spheres (atm) and 1.5 atm (Fig. 1.12). The most recent experiment at low field

measured the MuHFS with Kr gas pressures from 1.6 atm to 73 atm (Fig. 1.13).

The measurement at low field also used Ar gas.

Measurements at lower gas pressures suppress the uncertainty caused by the gas

pressure extrapolation. Such measurements at lower gas pressure have limitations.

If gas pressure is lower, fewer muons can stop inside the microwave cavity, and less

muonium is available for the spectroscopy, hence reducing the statistics. Lowering

muon momentum may enhance the ratio of the muon stopped per injected muon,

but in general, fewer muons can be extracted from a beamline when lowering the

momentum.

In this research, a microwave cavity with larger volume realizes the measurement

at lower gas pressures without the severe loss of the statistics. Adjusting a larger

cavity to the MuHFS frequency (4.463 GHz) requires the use of higher resonance

mode. In general, using a higher resonance mode in cavity causes more possibility

of mode interference (unwanted another mode with a resonance frequency that is

near MuHFS). This requires a careful design of the cavity for using a higher mode.

Recent progress of computation and simulation of the cavity mode has made the

design of the cavity with a higher mode available. This is the most important aspect

of this research, and the details will be discussed in Chap. 3.
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Figure 1.9: Experimental setup of the precursor high field measurement at LAMPF

[51].

Figure 1.10: Obtained results from previous experiments. The red circles indicate

the results from the measurements in the high magnetic field and the blue ones

indicate the results from the measurements in the very low field.
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Figure 1.11: Zoomed view of the results from experiments. The red circles indicate

the results from the measurements in high magnetic field and the blue ones indicate

the results from the measurements in very low field.

Figure 1.12: Gas pressure extrapolation of the precursor high-field measurement at

LAMPF [51]. The experiment was done at 1.5 atm and 0.8 atm at room temperature.
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Figure 1.13: Gas pressure extrapolation of the precursor very low field measurement

at LAMPF [52]. The experiment has been done with the Kr pressures varied from

1.64 atm to 72.6 atm.
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1.4 MuSEUM Experiment

MuSEUM (Muonium Spectroscopy Experiment Using Microwave) is a newly pro-

posed experiment to measure the muonium hyperfine structure with unprecedented

precision using intense pulsed muon beams at J-PARC. As mentioned above, there

are two different measurement methods, high-field, and low-field. They are comple-

mentary measurements since they have different sources of systematic uncertainty.

MuSEUM aims a factor of ten improvements for both measurements.

Currently, a new beamline called H-Line is under construction at J-PARC, and

ten times more intense muon beam will be available compared to the current beam-

line, D-Line. The measurement in a high field requires the superconducting magnet,

but due to the limitation of the space in the experimental area D2 the installation of

the magnet is currently not possible. MuSEUM started the measurement at a low

field with existing Beamline D2. In order to conduct the high field measurement,

MuSEUM needs an experimental area with more space for installation of the su-

perconducting magnet. H-Line and its experimental area H1 with more space than

D2 are under construction, so it will start the measurement in a high field once the

H-Line is ready.

1.4.1 Strategy

One of the key components of the MuSEUM experiment is the improvement of the

statistics. This improvement is available through the intense pulsed muon beam at

J-PARC. The pulse structure of the muon beam is useful for efficient analysis.

Precursor experiments used LAMPF, which has DC (constant) muon beams.

The experimental setup of the precursor experiments is shown. This is the case

for the measurement in high field, but in the low field, they used a similar setup.

They used a thin scintillator as a muon arrival timer. They used the information on

how long muoniums feel the microwave to induce the transition. This information

is useful for more efficient analysis, which will be discussed in detail in the latter

section. The injected muon starts the timer, and forms a muonium in Krypton gas,

then decay. Decay positrons are detected by a positron counter. If the second muon

arrives before the first muon decay, it is difficult to identify how long each muonium

feels the microwave, since one cannot distinguish from which muon the positron

decay. This pile-up of the muon prevents them from using a more efficient analysis

method. They hence chopped the beam to establish a quasi-pulsed structure of the

beam, which enables them to suppress the pile-up. The chopping, however, reduces

the available beam intensity. After the chopping, the intensity for the precursor

experiment was 2× 106 muons per second.

Compared to the DC beam at LAMPF, pulsed beam at J-PARC has no need to

be chopped. The muon arrival is known as a trigger signal which is synchronized
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Figure 1.14: Time structure of the muon beam at LAMPF and J-PARC

with the RF (Radio Frequency) of the accelerator. The signal is used for the trigger

of the data acquisition (DAQ) system. The current beam intensity at D-Line is

5× 106 muons per second. In the near future, more proton beam power and a new

beamline called H-Line enhance the muon beam intensity up to 1× 108 muons per

second. A comparison of the two beams at LAMPF and J-PARC is summarized in

Fig. 1.14.

1.4.2 First Pilot Measurement

We conducted the first measurement trial in June 2016 [53, 54]. The resonance

curve obtained from the first measurement is shown in Fig. 1.15. The statistical

uncertainty was 22 kHz (5 ppm). The systematic uncertainty was evaluated to be

73 Hz. The main source of the systematic uncertainty is gas pressure extrapolation.

The result was mainly limited by the lack of statistics. The statistics were limited

mainly for two reasons.

First, at the time of the first measurement, the beam power at J-PARC MLF

is limited to 150 kW. The maximum beam power planned at J-PARC is 1 MW

and this can improve the statistics. At the time of June 2018, the beam power was

enhanced to 500 kW. In the future, a new beamline (H-Line) can supply ten times

more muons compared to the existing beamline, D-Line.

Second, the microwave cavity used in the first measurement was too small com-

pared to the muon beam size. The cylindrical cavity has a diameter of 81 mm. The

muon beam has a cross-sectional distribution which is similar to two-dimensional

Gauss function. The 2σ of the typical beam profile is more than 60 mm (See Fig.
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Figure 1.15: The resonance obtained in the first experiment at J-PARC [53, 54].

1.16). The beam width becomes larger by multiple scattering with Kr atoms in the

gas chamber.

The cavity size is determined by the MuHFS frequency (4.463 GHz) and the

resonance mode. In the case of the first cavity, Transverse Magnetic 110 (TM110)

mode is used. The cross-sectional view of the muon beam has a diameter of 50 mm

in the initial distribution. The muon beam distribution becomes broader due to the

scattering with Kr gas atoms in the microwave cavity. Subsequently, most of the

muon stop in the cavity wall and do not form muonium. This effect reduces the

signal-to-noise ratio and makes the experiment statistically insensitive.

To reduce the number of the muon stop in the cavity wall and ameliorate the

statistics, we develop a new microwave cavity with TM220 resonance mode. This

new cavity has a diameter of 181 mm, which is sufficiently large to contain almost

all the muon injected inside the cavity. This larger cavity also enables the measure-

ment at lower Kr gas pressures without suffering severe loss of the statistics. The

measurements at lower Kr pressure suppresses the systematic uncertainty related to

the gas pressure extrapolation, which was the dominant systematic uncertainty at

the first measurement at J-PARC.

1.4.3 Second Pilot Measurement

In July 2017, we made the pilot measurement with krypton pressure with 1.0 atm.

The analysis in detail is discussed elsewhere [55]. In this measurement, we used

a new microwave cavity discussed in Sec. 3.5.2. Measurements at lower krypton

pressures change the resonance frequency of the cavity since the permittivity in

krypton varies according to the krypton density, so we needed to modify the cavity

antennae to adjust the resonance frequency of the cavity. Due to the limitation of
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Figure 1.16: The dimension of the TM110 cavity and the cross-sectional profile of

the muon beam. The muon beam has a cross-sectional distribution which is similar

to the two-dimensional Gauss function. The 2σ of the initial beam profile is more

than 60 mm. The diameter of the cavity is 81 mm and it is not sufficiently large to

contain all the injected muons.

the time, there was no such time of the adjustment. The result in [55] will be used

for pressure extrapolation in this thesis.

1.5 Structure of the Dissertation

In this dissertation, we present the development of the new microwave cavity with

TM220 resonance mode and realization of the measurement at Kr pressure lower

than 0.8 atmospheres (atm). We conducted the measurement at the low field using

the existing beamline (D-Line) and the experimental area D2 in J-PARC. Combined

with the previous result at 1.0 atm (Sec. 1.4.3), we extrapolate the results to obtain

the MuHFS frequency at the zero Kr density. We present the basic theoretical

discussion of the MuHFS in Chapter 2 and we explain our experimental setup as

well as the development of the cavity in Chapter 3. We discuss the analysis in detail

in chapter 4. In chapter 5, we show the result and discuss systematic uncertainty.

We also address the future prospect for the MuSEUM project.
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Chapter 2

Theoretical Discussion

2.1 Energy Diagram of Muonium

Fig. 2.1 indicates the energy diagram of the muonium. Each energy level splits

into two different substates due to the spin-spin interaction between the muon and

the electron. Throughout this thesis, the term ”hyperfine structure” indicates the

ground-state hyperfine structure, i.e., the energy difference between two 1S states.

2.1.1 Ground-State Hyperfine Structure of Muonium

In this section, we discuss the theoretical calculation of MuHFS1. The leading con-

tribution for the ground-state hyperfine structure of the muonium can be written

by the Fermi formula [56]:

∆νF =
16

3
Z3α2R∞c

me

mµ

1 + me

mµ

−3

, (2.1)

where Z is the atomic number with Z = 1 for muonium, α is the fine structure

constant, me (mµ) is the electron (muon) mass, c is the speed of light, and R∞

is the Rydberg constant. The higher order terms can be calculated from Lorentz

covariant theories, such as the Bethe-Salpeter equation [57, 58, 59], non-relativistic

QED (NRQED)[60, 61, 62].

The theoretical expression of the muonium hyperfine structure interval ∆ν in-

cluding QED, weak, and hadronic effect, is written as

∆ν = ∆νF +∆νQED +∆νweak +∆νhad, (2.2)

where the ∆νQED is the contribution from higher-order QED, ∆νweak is the contribu-

tion from weak interaction, and ∆νhad is the contribution from hadronic interaction.

Furthermore, ∆νQED is also divided into smaller terms,

∆νQED = ∆νD +∆νrad +∆νrec +∆νrad−rec, (2.3)

1The discussion in detail can be found in [17].
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Figure 2.1: Muonium energy levels (not to scale)

where ∆νD is the Dirac contribution, ∆νrad is the radiative corrections, ∆νrec is the

recoil corrections, and ∆νrad−rec is the radiative-recoil corrections.

QED: Dirac

The Dirac contribution is expressed as the following equation

∆νD = ∆νF(1 + aµ)
[
1 +

3

2
(Zα)2 +

17

8
(Zα)4 + · · ·

]
(2.4)

where aµ is the muon anomalous magnetic moment.

QED: radiative

The radiative corrections are

∆νrad = ∆νF(1+aµ)
[
D(2)(Zα)

(
α

π

)
+D(4)(Zα)

(
α

π

)2

+D(6)(Zα)
(
α

π

)3

+ · · ·
]
(2.5)

where D(n)(Zα) are the contributions from n virtual photons. The leading term is

D(2)(Zα) =A
(2)
1 +

 ln 2− 5

2

πZα
+

−2

3
ln2 (Zα)−2 +

281

360
− 8

3
ln 2

 ln (Zα)−2 + 16.9037 . . .

(Zα)2
+

5

2
ln 2− 547

96

 ln (Zα)−2

π(Zα)3 +G(Zα)(Zα)3 (2.6)
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where A
(2)
1 = 1

2
is the contribution from a vacuum-polarization term in electron

anomalous magnetic moment ae. The function G(Zα) is for all higher-order contri-

butions in powers of Zα and can be divided to self-energy and vacuum-polarization

contributions, G(Zα) = GSE(Zα) +GVP(Zα). One loop self-energy has been calcu-

lated by Yerokhin and Jentschura [63];

GSE(α) = −13.8308(43). (2.7)

The vacuum-polarization part except Wichmann-Kroll contribution has been calcu-

lated as [64]

GVP(α) = 7.227(9). (2.8)

D(4)(Zα) has been calculated as [65]

D(4)(Zα) =A
(4)
1 + 0.77099(2)πZα +

−1

3
ln2 (Zα)−2

− 6.390 . . .× ln (Zα)−2 + 10(2.5)

(Zα)2 + · · · (2.9)

where A
(4)
1 = −0.328 478 965 579 . . . is the next leading order vacuum-polariation

term in ae.

The next term D(6)(Zα) = A
(6)
1 + · · · = 1.181 241 456 . . . + · · · is only partially

calculated, and for n > 3, the functions D(2n)(Zα) are considered to be negligible.

QED: recoil

Recoil correction is expanded by a small parameter me/mµ. Note that in positro-

nium this parameter equals to unity and higher order contribution becomes larger.

The leading term of the recoil correction comes from two-photon exchange [66]. The

whole contribution can be written as below,

∆νrec =∆νF
me

mµ

− 3

1− (me/mµ)2
ln
(
mµ

me

)
Zα

π
+

1

(1 +me/mµ)2ln (Zα)−2 − 8 ln 2 +
65

18
+

 9

2π2
ln2

(
me

mµ

)
+
(
27

2π2
− 1

)
ln
(
me

mµ

)

+
93

4π2
+

33ζ(3)

π
− 13

12
− 12 ln 2

me

mµ

(Zα)2
+

−3

2
ln
(
mµ

me

)
ln (Zα)−2 − 1

6
ln2 (Zα)−2 +

101

18
− 10 ln 2

 ln (Zα)−2

+ 40(10)

(Zα)3

π

+ · · · (2.10)

where ζ is the Riemann zeta function.
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QED: radiative-recoil

The radiative effects in recoil diagrams are called radiative-recoil correction. The

radiative-recoil contributions ∆νrad−rec are

∆νrad−rec =∆νF

(
α

π

)2me

mµ


−2 ln2

(
mµ

me

)
+

13

12
ln
(
mµ

me

)
+

21

2
ζ(3) +

π2

6
+

35

9


+

4
3
ln2 α−2 +

16

3
ln 2− 341

180

 lnα−2 − 40(10)

πα
+

−4

3
ln3

mµ

me

+
4

3
ln2

mµ

me

α
π


−∆νFα

2

me

mµ

26 ln 2 + 13

6

+ · · · (2.11)

where we omit the explicit dependence on Z for simplicity.

There are additional radiative-recoil terms from single-logarithmic and non-

logarithmic three-loop contributions

∆νF

α
π

3
me

mµ


−6π2 ln 2 +

π2

3
+

27

8

 ln mµ

me

+ 68.507(2)

 = −30.99 Hz.

Hadronic

There is a correction from the hadronic vacuum polarization. The vacuum polar-

ization term was calculated to be 232.7(1.4) Hz [67]. A negligible light-by-light

scattering correction was calculated to be -0.0065(10) Hz [68].

Weak

There is a weak interaction term from the exchange of Z0 boson. The term is

expressed as [69]

∆νweak = −GF
3
√
2memµ

8απ
∆νF (2.12)

= −65 Hz (2.13)

where GF is the Fermi coupling constant. The next-leading order term was evaluated

to be less than 1 Hz and negligible [70].

Total

As discussed in the Commitie on Data for Science and Technology [17, 71], they use

a least-square adjustment of the fundamental constants (R∞, α, me

mµ
, aµ) using the

theoretical expression for the MuHFS,

∆νMu(th) = ∆νMu

(
R∞, α,

me

mµ

, aµ

)
+ δMu (2.14)
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where δMu = 0(85) accounts for the theoretical uncertainty (85 Hz).

The adjustment above yields the theoretical value of MuHFS as [17]

∆νth = 4.463 302 868(271) GHz (2.15)

where the main source of the uncertainty is the muon-electron mass ratio mµ/me.

Purely theoretical uncertainty is 85 Hz [17]. Each contribution will be briefly re-

viewed below, and the summary table is shown in Table 2.1. Note that the CODATA

does not open the adjustment result for each contribution of the theoretical value,

so the values for contributions were cited from the other sources, and the square of

the quadrature sum of the uncertainties of the contributions does not equal to the

total uncertainty.

Table 2.1: Contributions to muonium hyperfine structure and its theoretical values.

Contribution Theoretical value [kHz]

Fermi Energy and aµ 4 459 031.816(253)

ae 5 170.926

Radiative −104.901(39)

Recoil −791.714(80)

Radiative-Recoil −3.427(70)

Electroweak −0.065

Hadronic 0.233(1)

Total 4 463 302.868(271)

2.1.2 The Zeeman Effect

In this section, we discuss the shift of the hyperfine frequency due to the external

magnetic field, the Zeeman effect. The effect is mainly relevant to the measurement

in a high field, but also important to the measurement at the low field when we

consider the systematic effect of the residual magnetic field.

The Hamiltonian of muonium under magnetic field is written as

H = h∆νI · J + µe
BgJJ ·B + µµ

Bg
′

µI ·B (2.16)

where h is the Planck constant, ∆ν is the hyperfine structure interval of the muo-

nium, I and J are the spin of the muon and the electron, µe
B and µµ

B are the Bohr

magneton and muon Bohr magneton, gJ (g
′
µ) is the bound g-factor of the electron

(muon) in muonium, and the B is the applied magnetic field.

The quantities gJ and g
′
µ are related to the free g values, ge and gµ [56, 72]2:

gJ = ge

1− α2

3
+
α2

2

me

mµ

+
α3

4π
−

α2
(
me

mµ

)2

+
5α3

12π

me

mµ

+α4
(
1

12
+
0.289

π

), (2.17)
2Note that the expression of g

′

µ in [72] has a typographic error in the 3rd order term.
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Figure 2.2: Zeeman effect on the ground-state muonium hyperfine structure

and

g
′

µ = gµ

1− α2

3
+
α2

2

me

mµ

−

α2
(
me

mµ

)2

− α3

12π

me

mµ

+
97

108
α4

. (2.18)

The energy eigenvalues of the Hamiltonian are given by the Breit-Rabi equation,

W1 = +
1

4
h∆ν +

1

2
(gJµ

e
B + g

′

µµ
µ
B)B (2.19)

W2 = −1

4
h∆ν +

1

2
h∆ν

√
1 + x2 (2.20)

W3 = +
1

4
h∆ν − 1

2
(gJµ

e
B + g

′

µµ
µ
B)B (2.21)

W4 = −1

4
h∆ν − 1

2
h∆ν

√
1 + x2 (2.22)

where

x =
(gJµ

e
B − g

′
µµ

µ
B)B

h∆ν
(2.23)

is a dimension-less quantity, H is the magnetic field strength, F is the quantum

number for the total angular momentum, and MF is the quantum number for the

z-component of the total angular momentum. The graph of the energy eigenvalues

in frquency is shown in Fig. 2.2. Here, we number the four states starting from

the one with the highest energy, and the transition frequency between the i-th state

and the j-th state is called ∆νij, e.g., ∆ν12 = (W1 − W2)/h. The magnetic field

dependence of the transition frequencies ∆ν12 and ∆ν34 is shown in Fig. 2.3.
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Figure 2.3: Transition frequencies and the applied magnetic field. The blue line

indicates ∆ν12 and the red line indicates ∆ν34.
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The spin eigenfunctions are

χ1,1 = |1〉 = αeαµ (2.24)

χ1,0 = |2〉 = cαeβµ + sβeαµ (2.25)

χ1,−1 = |3〉 = βeβµ (2.26)

χ0,0 = |4〉 = sαeβµ − cβeαµ (2.27)

where the αµ and βµ are the normalized spin eigenfunction of the muon. αµ (βµ)

corresponds to the spin orientation in the positive (negative) z direction. In the case

of this thesis, the positive z direction is set to be the initial muon spin orientation,

antiparallel to the muon beam. The quantities s and c are field-dependent

s =
1√
2

1− x√
1 + x2

1/2

(2.28)

c =
1√
2

1 + x√
1 + x2

1/2

(2.29)

which satisfy

s2 + c2 = 1.

In the limit of very low magnetic field, x � 1 and s ≈ c ≈ 1/
√
2, and the spin

eigenfunctions become

χ1,1 = |1〉 = αeαµ (2.30)

χ1,0 = |2〉 ≈ 1√
2
αeβµ +

1√
2
βeαµ =

1√
2
(αeβµ + βeαµ) (2.31)

χ1,−1 = |3〉 = βeβµ (2.32)

χ0,0 = |4〉 ≈ 1√
2
αeβµ −

1√
2
βeαµ =

1√
2
(αeβµ − βeαµ). (2.33)

Also, in the limit of very low magnetic field, ∆ν14, ∆ν24, and ∆ν34 all equal to

∆ν. This research is done at nearly zero magnetic field (≈100 nT or 1 mG) and

approximate values of the transition frequencies are determined by expanding for

small x:

∆ν14 ≈ ∆ν +
1

2h
(gJµ

e
BH + g

′

µµ
µ
BH) (2.34)

∆ν24 ≈ ∆ν (2.35)

∆ν34 ≈ ∆ν − 1

2h
(gJµ

e
BH + g

′

µµ
µ
BH) (2.36)

The difference of ∆ν14 and ∆ν is 1.4 kHz/mG and at the measurement condition

(B≈1 mG), it is unresolvable compared to the natural line width, 145 kHz.
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2.2 Muonium Formation and State Population

2.2.1 Muonium Formation in Krypton Gas

Table 2.2: Muonium formation threshold energies Eth [51] and muonium formation

ratio PMu measured by [74] for various gas atoms or molecule.

Atom or Molecule Eth PMu (Pressure [atm])

He +11.04 0±1 (1.2-3.1)

Ne +8.02 7±5 (1.2)

Ar +2.22 74±4 (1.0-2.8)

Kr +0.46 100±5 (0.4-0.95)

Xe -1.41 100±4 (0.4-0.65)

N2 +2.0 84 ±4 (1.0-2.4)

We use krypton as the muonium production target. Muonium is formed when a

muon is stopped in gas target such as krypton, by electron capture

µ+ +Kr → Mu+Kr+. (2.37)

Muonium formation in gas has been extensively studied [73]. Table 2.2 shows the

experimental result of such studies on muonium formation threshold energies Eth

and muonium formation ratio PMu for various atoms or molecules in gas phase [51]

[74]. If the threshold energy is too high, muonium formation rate is low, and if the

threshold energy is too low, the produced muonium becomes too energetic. Krypton

is the ideal candidate in the sense of the threshold energy.

Muonium is an isotope of hydrogen and a highly reactive paramagnetic atom.

In order to avoid chemical reactions and depolarization due to the collision, it is

desirable to use an inert gas. By reasons above, we use krypton gas for the muonium

production target.

The muonium spin state depends on the initial polarization P of the injected

muon and parameters s and c which are related to the external magnetic field. The

spin evolution during the muonium formation and subsequent hyperfine interaction

is briefly summarized in Fig. 2.4. Here, we focus on the case of the initial muon is

100% polarized and the external magnetic field is low (x � 1 and s ≈ c ≈ 1/
√
2).

Since the spin of the electron captured by muon is not polarized, there are equal

probability of muonium in |αµαe〉 state and in |αµβe〉 state right after the muonium

formation. The latter state, however, is not the energy eigenstate thus evolves as

the combination of the two energy eigenstates, namely |2〉 = 1√
2
(αeβµ + βeαµ) and

|4〉 = 1√
2
(αeβµ − βeαµ). The interaction is sufficiently faster (4.463 GHz) than the

muon decay rate and we treat the two states are equally occupied. This mixing

effectively halves the muonium polarization.
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Figure 2.4: Muonium spin state evolution under low magnetic field. The initial

muon spin polarization is 100% aligned to up, antiparallel to the muon beam.

2.2.2 State Population

2.3 Muon Decay

Muon decays with a lifetime of τµ =2.196 9811(22) µs [75]. The leading decay branch

is so-called Michel decay,

µ+ → e+ + νµ + νe. (2.38)

Since the chiralities of neutrino and antineutrino are fixed, the decay positron is

emitted preferentially in the direction of the muon spin. This parity violation is

an important aspect for analysing the muonium spin state. The distribution of the

decay positron is

N(y, θ, t)dydΩ =
γ

2π
y2
[
(3− 2y) + (2y + 1)Pz0(t) cos θ

]
e−γtdydΩ (2.39)

where y is the positron momentum normalized by its maximum y = p/pmax, and

pmax =
m2

µ −m2
e

2mµ

c = 52.8 MeV/c, (2.40)

θ is the polar angle between the positron momenta and the muon spin, γ is the muon

decay rate, γ = 1/τµ ≈ 4.55× 105 Hz, and Pz0(t) is defined to satisfy the following

equation,

Pz(t) = Pz0(t)e
−γt. (2.41)
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Figure 2.5: The distribution of the decay positron momentum direction in the Michel

decay [76]. The spectrum is in the case for accounting all the decay positron energy.
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Figure 2.6: The distribution of the decay positron momentum direction in the Michel

decay [76]. The spectrum is in the case for accounting only the positrons with the

highest energy.
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where Pz(t) is the z-component of muon polarization in muonium state. The decay

positron spectrum is shown in Fig. 2.5 [76].

The higher momentum the decay positron has, the more likely it decays along

the muon spin. So one can cut the low energy positrons and reduce the counting

rate of the detectors, without losing the statistical sensitivity of the measurement.

When the energy threshold is defined as y0, the decay positron spectrum N(y0, θ, t)

is described as

N(y0, θ, t) =
∫ 1

y0
N(y, θ, t)dydΩ (2.42)

=
γ

4π

[
A1(y0) + A2(y0)Pz0(t) cos θ

]
e−γtdΩ (2.43)

=
γ

4π
A1(y0)

[
1 + a(y0)Pz0(t) cos θ

]
e−γtdΩ (2.44)

where

A1(y0) = 1− (2y30 − y40) (2.45)

A2(y0) =
1

3
− (y40 −

2

3
y30) (2.46)

a(y0) =
A2(y0)

A1(y0)
. (2.47)

The probability of the direction of the decay positrons in case of the highest

momentum is shown in Fig. 2.6.

2.4 Resonance Line Shape Theory

2.4.1 Hamiltonian and Eigenstate

Muonium has an initial population among Zeeman states as discussed above. Tran-

sitions between the states are induced by an applied microwave magnetic field. The

transition probability depends on the detuning of the applied microwave frequency

from the transition frequency as well as the power of the applied microwave. A

resonance line can be observed by scanning the microwave frequency with a fixed

magnetic field. Here, we discuss how resonance line shape is expressed.

The applied microwave field affixes an time-dependent term to the Hamiltonian,

H′
= (gJµ

e
B
~J + g

′

µµ
µ
B
~I) · ~B1 cosωt (2.48)

≡ H′

0 cosωt (2.49)

where ~B1 = Bxx̂ + Byŷ is the vector amplitude of the applied microwave field and

ω is its angular frequency.

The muonium wave function ψ(~r, t) is expressed as follows

ψ(~r, t) = φ(~r)
4∑

k=1

ak |k〉 e−iWkt/h̄ (2.50)
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in which φ(~r) is the spatial component of the wavefunction, ak is the coefficient of

the kth spin eigenfunction |k〉, Wk is the energy eigenvalue for the kth eigenstate,

and h̄ is the reduced Planck constant, h̄ = h/2π.

2.4.2 Time Evolution of State Amplitudes

There are two factors which change the muonium state amplitude: muon decay

and the transition induced by the applied microwave field. By phenomenological

treatment, one can write the muon decay as

ȧk = −1

2
γak(t) (2.51)

in which γ is the muon deacy rate, γ = 4.549(2) × 105 Hz. The induced transition

by the applied microwave field is treated by

ih̄
∂ψ

∂t
= (H +H′

)ψ(t). (2.52)

With the expressions above, the time evolution of the state amplitudes is written

as

ȧk = −1

2
γak(t)− i

4∑
i=1

aibkifik(t) (2.53)

where

bik =
1

2h̄

〈
i
∣∣∣H′

0

∣∣∣ k〉 (2.54)

fik(t) = e−i(ωik−ω)t + e−i(ωik+ω)t (2.55)

ωik =
Wi −Wk

h̄
. (2.56)

The matrix elements of bik is summarized in Table 2.3.

Table 2.3: The matrix elements of bik. KJ = gJµ
e
B/4h̄ and KI = g

′
µµ

µ
B/4h̄. B± is

defined as B± = Bx ± iBy.

i\k 1 2 3 4

1 (KJ +KI)Bz (sKJ + cKI)B− 0 (cKJ − sKI)B−

2 (sKJ + cKI)B+ (c2 − s2)(KJ −KI)Bz (cKJ + sKI)B− −2sc(KJ −KI)Bz

3 0 (cKJ + sKI)B+ −(KJ +KI)Bz (−sKJ + cKI)B+

4 (cKJ − sKI)B+ −2sc(KJ −KI)Bz (−sKJ + cKI)B− (s2 − c2)(KJ −KI)Bz

Using the expression in Table 2.3, the time evolution of the state amplitude is
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rewritten as
ȧ1

ȧ2

ȧ3

ȧ4

 =


−γ/2 −ib12ei(ω12−ω)t 0 −ib14ei(ω14−ω)t

−ib∗12e−i(ω12−ω)t −γ/2 −ib23ei(ω23−ω)t −ib24ei(ω24−ω)t

0 −ib∗23e−i(ω23−ω)t −γ/2 −ib34ei(ω34−ω)t

−ib∗14e−i(ω14−ω)t −ib∗24e−i(ω24−ω)t −ib∗34e−i(ω34−ω)t −γ/2




a1

a2

a3

a4

 .

(2.57)

The equation 2.57 above ignores the time-dependent Bloch-Siegert terms, involving

the factors e±i(ωij+ω)t. The effect of neglecting these terms will be discussed in Sec.

5.1.5.

In this experiment, the muon is fully polarized initially and magnetic field is

applied to perpendicular to the muon spin, i.e., Bz = 0 in the experiment thus all

the diagonal elements and b24 and b∗24 vanish (the diagonal elements have already

been dropped in Eq. 2.57),
ȧ1

ȧ2

ȧ3

ȧ4

 =


−γ/2 −ib12ei(ω12−ω)t 0 −ib14ei(ω14−ω)t

−ib∗12e−i(ω12−ω)t −γ/2 −ib23ei(ω23−ω)t 0

0 −ib∗23e−i(ω23−ω)t −γ/2 −ib34ei(ω34−ω)t

−ib∗14e−i(ω14−ω)t 0 −ib∗34e−i(ω34−ω)t −γ/2




a1

a2

a3

a4

 .

(2.58)

There are terms with angular frequency ωmn − ω. In the case the subscripts mn

satisfies mn = 12, 13, or 23, ωmn becomes sufficiently smaller than the microwave

angular frequency ω ≈ 2π × 4.463 GHz, satisfying |ωmn − ω| ≈ ω � 0. In the case,

the time average of fmn(t) in Eq. 2.55 becomes zero. We ignore such terms and

the effect of ignoring those nonresonant states will be discussed in Sec. 5.1.5. The

equation is simplified as
ȧ1

ȧ2

ȧ3

ȧ4

 =


−γ/2 0 0 −ib14ei(ω14−ω)t

0 −γ/2 0 0

0 0 −γ/2 −ib34ei(ω34−ω)t

−ib∗14e−i(ω14−ω)t 0 −ib∗34e−i(ω34−ω)t −γ/2




a1

a2

a3

a4

 .

(2.59)

Here, the state |2〉 is decoupled from the other states.

From now on, we choose the x axis parallel to the microwave field, ~B1, in order

to simplify the expressions below. Introducing the linear combinations of the state

amplitudes

a+ =
1

2

√
2(a1 + a3) (2.60)

a− =
1

2

√
2(a1 − a3) (2.61)
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and defining microwave parameter b as follows,

b ≡ b14 = −b∗34, (2.62)

we simplify the equation further:
ȧ+

ȧ−

ȧ4

 =


−γ/2 0 0

0 −γ/2 −i
√
2bei(ω0−ω)t

0 −i
√
2b∗e−i(ω0−ω)t −γ/2



a+

a−

a4

 . (2.63)

and obtain the equation where only a− and a4 are coupled. Therefore, we treat the

equation as a two-state problem and obtain the solutions:

a+(t) =
a1(0) + a3(0)√

2
e−γt/2 (2.64)

a−(t) =

{
a1(0)− a3(0)√

2

[
cos

Γt

2
− iω

′

Γ
sin

Γt

2

]
+ a4(0)

[
−i2

√
2b

Γ
sin

Γt

2

]}
e−γt/2+iω

′
t/2

(2.65)

a4(t) =

{
a1(0)− a3(0)√

2

[
−i2

√
2b

Γ
sin

Γt

2

]
+ a4(0)

[
cos

Γt

2
+
iω

′

Γ
sin

Γt

2

]}
e−γt/2−iω

′
t/2

(2.66)

where

ω
′
= ω0 − ω (2.67)

Γ =
√
ω′2 + 8|b|2. (2.68)

From the equations above, we can obtain the state amplitude a1(t) and a3(t) as

follows,

a1(t) =
1

2

√
2[a+(t) + a−(t)] (2.69)

a3(t) =
1

2

√
2[a+(t)− a−(t)] (2.70)

2.4.3 Muon Spin Polarization

The total muon spin polarization Pz equals to the expectation value of the muon

spin operator Iµz in terms of the state amplitudes and the spin eigenfunctions

Pz(t) = 〈Ψ(t) | 2Iµz/h̄ |Ψ(t)〉 (2.71)

=
4∑

i,j=1

a∗i aj 〈χ∗
i | 2Iµz/h̄ |χj〉 eiωijt (2.72)

where Ψ(t) is the time-dependent muonium wavefunction and χ is the spin eigen-

function. In the case of low magnetic field, the muon spin polarization is written as

Pz(t) = |a1|2 − |a3|2 + a∗2a4e
iω24t + a∗4a2e

−iω24t. (2.73)
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The last two terms have faster component ω24 compared to the muon decay rate, so

by averaging we can neglect the terms and obtain

Pz(t) = |a1|2 − |a3|2 (2.74)

= 2Re(a∗+(t)a−(t)) (2.75)

=
1

2

(
cos

Γt

2
cos

ω
′
t

2
+
ω

′

Γ
sin

Γt

2
sin

ω
′
t

2

)
e−γt (2.76)

=
1

4

(
Γ + ω

′

Γ
cos

Γ− ω
′

2
t+

Γ− ω
′

Γ
cos

Γ + ω
′

2
t

)
e−γt (2.77)

2.4.4 Resonance Line Shape

The resonance line shape is obtained from the time integration of the muon spin flip

signal. We define the signal as the difference of the number of the positrons counted

with and without microwave field, i.e.,

S =
NON −NOFF

NOFF

(2.78)

where NON (NOFF) is the number of the counted positrons when the microwave is

ON (OFF).

The differential signal for a resonance line shape is defined as follows

dS =
a(y0)P

2

∫ t2
t1

{
Γ+ω

′

2Γ
cos Γ−ω

′

2
t+ Γ−ω

′

2Γ
cos Γ+ω

′

2
t− 1

}
cos θe−γtdt∫ t2

t1

(
1 + aP

2
cos θ

)
e−γtdt

(2.79)

=
a(y0)P

2
cos θ

1 + a(y0)P
2

cos θ
L(|b|2, ω′

, t1, t2) (2.80)

where L is the microwave dependent term,

L(|b|2, ω′
, t1, t2) =

1

e−γt1 − e−γt2
× (2.81)γe−γt

Γ

 Γ + ω
′

(Γ− ω′)2 + 4γ2

(
(Γ− ω

′
) sin

Γ− ω
′

2
t− 2γ cos

Γ− ω
′

2
t
)

+
Γ− ω

′

(Γ + ω′)2 + 4γ2

(
(Γ + ω

′
) sin

Γ + ω
′

2
t− 2γ cos

Γ + ω
′

2
t
)
+

Γ

γ


t2
t1

The integration of dS gives the signal

S =
a(y0)P

2
∫
V ρ(r)

[∫
D(1 +

a(y0)P
2

cos θ)dΩ
]
dτ

∫
V
ρ(r)L

∫
D
cos θ

dΩdτ (2.82)

where ρ(r) is the spatial distibution of the muonium, V is the volume of the mi-

crowave cavity, dτ is the volume element, and D is the solid angle covered by the

positron detector.
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Figure 2.7: Lorentzian shaped resonance line. The lines with different colors indicate

the resonance line with different values of microwave parameter b. The blue line is

the resonance with b = 400 kHz. The green line is the resonance with b = 700 kHz,

and the red line is the resonance with b = 1200 kHz. The red line has a wider

width compared to the other lines, although the change in signal height is not large,

deteriorating its statistical sensitivity to the determination of the resonance center.

This broadening of the resonance is so-called saturated power broadening.

The integration of the microwave term L over the infinite time interval (0, ∞)

makes the resonance line shape a Lorentzian form as follows

L(|b|2, ω′
, 0,∞) =

2|b|2(γ2 + 2|b|2)
(γ2 + 2|b|2)2 + γ2ω′2

(2.83)

Calculated resonance line is shown in Fig. 2.7. Red line corresponds to a resonance

line shape with |b| = 800 kHz. Green and blue lines indicate the resonance when |b|
= 400 kHz and |b| = 1200 kHz, respectively.

2.5 ”Old Muonium” Method

The statistical sensitivity of spectroscopy of a state with a lifetime is limited by the

natural line width. ”Old Muonium” method is a line-narrowing technique by using

the counts of the decay positron from long-lived muoniums. This method realizes

a resonance line with a narrower width, at the expense of a reduced number of the

49



CHAPTER 2. THEORETICAL DISCUSSION

counted positrons.

The old muonium method was also applied in the precursor experiment at

LAMPF [19]. The LAMPF DC beam structure forced them to chop the beam and

make a quasi-pulsed beam, which reduced the statistics further. The pulsed muon

beam at J-PARC enables us to use the old muonium method without chopping the

beam and limiting the statistics.

We can obtain the resonance line shape from the Eq. 2.81,

L(|b|2, ω′
, t1, t2) =

1

e−γt1 − e−γt2

γ

Γ
×A+

{
e−γt2(k− sin

k−
2
t2 − 2γ cos

k−
2
t2)− e−γt1(k− sin

k−
2
t1 − 2γ cos

k−
2
t1)
}

+ A−

{
e−γt2(k+ sin

k+
2
t2 − 2γ sin

k+
2
t2)− e−γt1(k+ sin

k+
2
t1 − 2γ sin

k+
2
t1)
}

+ e−γt2 − e−γt1

, (2.84)

where

A± =
Γ± ω

′

(Γ∓ ω′)2 + 4γ2
(2.85)

and

k± = Γ± ω
′
. (2.86)

Figure 2.8 shows the comparison of the line shapes when integrating all the

positron signals (”conventional method”) and when integrating positron signals from

t1=2 µs to t2=6 µs. The microwave b parameter is set to be 400 kHz.
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Figure 2.8: Resonance line shapes of the conventional method and the old muonium

method. Blue line is the line shape of the conventional method, and the red line is

the line shape from the old muonium method when t1=2 µs and t2=6 µs.

|b| = 400 kHz.
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Chapter 3

Experimental Procedure and

Apparatus

In this chapter, we explain the apparatus and the procedure of the experiment. The

experiment was performed at Materials and Life science Facility (MLF) of Japan

Proton Accelerator Research Complex (J-PARC). We present a general overview of

the experiment in the first section of this chapter, then we will present the details of

each piece of the apparatus in the following sections. The section of the microwave

cavity introduces the design and the development of a new microwave cavity.

3.1 General Principle

Figure 3.1 shows the schematic drawing of the experimental setup. The main com-

ponents of the setup are a magnetic shield, a gas chamber, a microwave cavity, and

positron detectors. The magnetic shield made of permalloy suppresses the magnetic

field, which disturbs the precise spectroscopy of MuHFS. Nearly 100% polarized

muon beam is injected into a gas chamber. The gas chamber contains either 0.3,

0.4, 0.7, or 1.0 atm of 99.97% pure krypton (Kr) gas. After the injection, the col-

lisions with the Kr atoms decelerate the muon and in the end, the muon captures

one electron from one of the Kr atoms, forming a muonium.

Muon in muonium decays with a lifetime of 2.2 µs. The leading decay branch

(99%, [21]) is µ+ → e+ + νµ + νe. Since muon decay is a parity-violating

decay, the decay positron is preferentially emitted in the direction of the muon spin.

The initial direction of the spin of the injected muon beam is antiparallel to its

momentum (upstream), so the decay positrons from muoniums also emitted toward

upstream in the case of no MuHFS transition induced.

To induce the MuHFS transition, microwave is applied to a cavity which is

situated in the gas chamber. If we apply microwave with a frequency corresponds

to the hyperfine structure, muonium hyperfine transition occurs, and the muon spin
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Figure 3.1: Schematic drawing of the experimental setup.

flips since the hyperfine structure is a spin-spin interaction. As a result, more decay

positrons are emitted toward downstream, and the counts of the positron detectors

increase. One can determine hyperfine structure frequency by counting the number

of the detected positrons while sweeping the microwave frequency.
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3.2 Muon Beamline

Figure 3.2: Synchrotron and MLF in J-PARC [77]. The proton beam from a linac

is injected to the synchrotron, and it is accelerated up to 3 GeV before transported

to the MLF hall.

In this measurement, statistics is one of the important factors for the improve-

ment of precision. There are three major factors of muon beam which contribute

to the statistics: intensity, polarization, and time structure. The first two factors

are essential to increase the number of positrons and signal-to-noise ratio (S/N).

The last factor is important when we try to utilize the time dependence of the

muon spin flip signal, which can be used to reduce the statistical and the systematic

uncertainties by the old muonium method described in the chapter 2.

We use an intense pulsed muon beam at J-PARC MLF (Fig. 3.2) [77]. A linac

(not shown in the figure) and a synchrotron accelerate protons up to 3 GeV. The

protons are transported to MLF. Detailed view of the beamline in the MLF hall is

shown in Fig. 3.3. The repetition rate of the proton beam is 25 Hz. The proton

beam from the synchrotron irradiates a muon production target made of graphite.

As a consequence of nuclear spallation, positively charged pions are produced.

Some of the produced pions decay at rest on the surface of the muon production

target. The two-body parity-violating pion decay

π+ → µ+ + νµ (3.1)

emits a mono-energetic muon and the spin polarization of the muon is 100% opposite

to their momenta since the helicity of neutrino is left-handed. This muon is called

a ”surface” muon since the muon decays from a pion at rest on the surface of the

muon production target. The surface muons are transported through a solenoid and

a series of magnets (indicated as D-Line in the figure) to an experimental area called

area D2. The energy of the surface muon at the entrance of the experimental area

depends on materials in the beamline such as a thin foil for blocking the flow of
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radioactive materials from the production target. In the case of J-PARC MLF, the

energy of the surface muon at the entrance of the experimental area is 3.50 MeV

(momentum = 27.4 MeV/c). The operation power of the accelerator during the

experiment was 500 kW.

Positrons resulting from muon decay or e− − e+ pair production by gamma rays

contaminate the muon beam. To reduce the positrons, the beamline has a ~E× ~B

separator (Wien filter, indicated as DSEP in Fig. 3.3). The directions of the static
~E and ~B fields are mutually perpendicular and both transverse to the beam. The

separator only pass through particles with a velocity

v =
E

B
. (3.2)

The beamline magnets are tuned for particles with 27.4 MeV/c momentum, so the

positrons and the muons in the beam have different velocities. The strength of

the fields is set to pass only muons while vertically bending the trajectory of the

positrons.

55



CHAPTER 3. EXPERIMENTAL PROCEDURE AND APPARATUS

Figure 3.3: Detailed view of the beamline in the MLF hall [77]. The proton beam

irradiates the muon production target (upper right), and four different beamlines

extract produced muons. The beamline D has two branches and experimental areas,

area D1 and area D2. The experiment was conducted at area D2.

56 Sec. 3.2



CHAPTER 3. EXPERIMENTAL PROCEDURE AND APPARATUS

3.3 Magnetic Field

Figure 3.4: Magnetic shield made of three layers of permalloy box. The muon beam

is injected from the left-hand side. The shield contains the gas chamber and the

positron detectors. The dimension of the inner volume of the smallest box is 750

mm×550 mm×550 mm.

In the presence of an external magnetic field, the muonium spin rotates. The

gyromagnetic ratio of the muonium is roughly a half of the gyromagnetic ratio of

the electron,

γe = 176 GHz/T, (3.3)

γMu = 88 GHz/T. (3.4)

Under the magnetic field of 1 mG = 100 nT, the muonium spin precess at the rate

of γMu × 10−7/2π = 1.4 kHz. The rate corresponds to the rotation of muonium spin

of 1◦ in the muon lifetime, 2.2 µs.

In the experimental area D2, the magnetic field was measured to be ≈ 100 µT,

which is too strong for the measurement. The main sources of the magnetic field are

the Earth’s terrestrial magnetism, the beamline magnets and magnetized structures

under the floor of the experimental area.

To suppress the background field in the experimental area, we place three layers

of the permalloy box as a magnetic shield (Fig. 3.4). The high permeability of

permalloy prevents the magnetic flux from entering inside the shield box. The box

was designed to contain the whole apparatus, including the gas chamber and the

57



CHAPTER 3. EXPERIMENTAL PROCEDURE AND APPARATUS

positron detectors. The size of the inner volume of the smallest layer is 750 mm ×
550 mm × 550 mm. The shield has one through-holes with a diameter of 120 mm

for a duct for extension of the beamline to extract the muon beam without losing

muons due to the scattering with air. The duct is shown in Fig. 3.5. There are

also four square-shaped apertures (100 mm square for each) for the cables of the

detectors and the microwave system.

Before and after the installation of the shield, we measured the magnetic field

inside the shield. Figure 3.6 [78] shows the results of the measurements. The blue

triangle points indicate the magnetic field strength without the shield, measured at

the center of the beamline axis. The red circle points are magnetic field strength in

the cavity, measured at the center of the cavity (which is aligned to the center of the

beamline axis). The field is well suppressed to a few of 100 nT, which is sufficient

for the spectroscopy.

The magnetic field was measured by a three-axis fluxgate probe. We use a

commercially available fluxgate probe (MTI FM-3500, Fig. 3.7). The probe is a

cube with a side of 35 mm. It contains three coils inside. Each coil is 30 mm long

and measures a field along one axis. The resolution (0.5 nT) and the linearity (0.5%

for 1000 nT scale) of the probe are sufficiently precise for the measurement. The

typical variation of the magnetic field inside the shield is ≈ 20 nT and it is negligible.

We scanned the residual magnetic field distribution inside the cavity by the

fluxgate probe. Figure 3.8 shows the cross-sectional view of the measurement. We

insert the probe in the cavity, and we scan the probe position by rotating the probe

tilting angle theta. The result is shown in Fig. 3.9. The probability distribution of

the residual magnetic field felt by muonium ensemble in the cavity is calculated by

the field distribution and the muonium distribution in the cavity. The probability

distribution is shown in Fig. 3.10. The magnetic field felt by the muoniums are

mostly less than 300 nT, which is sufficient for the spectroscopy.
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Figure 3.5: A pipe duct for beam extension (left). The duct end is covered by a

sheet of 75 µm polyimide film. The distance between the duct end and the foil on

the gas chamber (right) is 10 cm.
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Figure 3.6: Comparison of the magnetic field in the experimental area with and

without the shield [78]. The blue triangle points indicate the magnetic field strength

without the shield, measured at the center of the beamline axis. The red circle points

are magnetic field strength in the cavity, measured at the center of the cavity (which

is aligned to the center of the beamline axis). The magnetic field is suppressed by

approximately a factor of 1000.

Figure 3.7: Fluxgate probe: a cubic probe with a side of 35 mm. Three coils for the

measurement of magnetic flux for each axis. A coil is 30 mm long.
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Figure 3.8: Schematic drawing of magnetic field measurement.
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Figure 3.9: Magnetic field distribution in the cavity [78]. To scan the field in a

broader volume, the probe was intentionally placed off from the beamline and the

cavity center. The offset from the center was 41 mm. Tilting angle indicates the

tilting angle of the probe position. When the probe is placed on the point 41 mm

vertically above the center of the cavity, the angle is zero. When the probe is 41

mm under the center, the angle is 180 degree. The other horizontal axis shows the

distance between the probe position and the cavity entrance, i.e., the cavity foil.
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Figure 3.10: The probability distribution of the residual magnetic field felt by muo-

nium in the cavity [78]. The horizontal axis is magnetic field in nT.
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3.4 Gas System

The gas system is composed of a gas chamber, a gas handling panel, a mass spec-

trometer (Q-MASS), and ancillary apparatus. A layout of the gas system is shown

in Fig. 3.11. The gas pressure is monitored by a capacitance gauge at the gas han-

dling panel. The precision of the gauge is 0.2%. Inside the gas chamber, there are

thermocouples to monitor the gas temperature.

Figure 3.11: The diagram of the gas system. SP indicates a scroll pump and TMP

is a turbo molecular pump. Kr gas is supplied to the chamber from a Kr gas bottle

through a gas handling panel. The pressure is monitored by a gauge on the panel.

QMASS measures the impurity in the gas.

The gas chamber is shown in Fig. 3.12. The cylindrical chamber is made of

aluminum A2219, which is a less magnetic aluminum alloy. The chamber can be

tolerable for various pressures from vacuum to 2.0 atm pressure. During this re-

search, we use krypton gas with a pressure of either 0.3 atm, 0.4 atm, or 0.7 atm.

For the muon beam entrance, there is a foil in the center of the upstream flange. The

shape of the foil is a circle 10 cm in diameter and 0.1 mm in thickness (Fig. 3.13).

The foil is made of aluminum A1050. The thickness of the other part of the upstream

64 Sec. 3.4



CHAPTER 3. EXPERIMENTAL PROCEDURE AND APPARATUS

Figure 3.12: Gas chamber

flange is 40 mm. The downstream flange serves also as an absorber for background

positrons contaminated in muon beam in order to improve the signal-to-noise ratio.

The thickness of the downstream flange is 55 mm.

The polarization of the muonium is a key factor for the measurement. Spin ex-

change of the muonium and other paramagnetic impurities, such as oxygen molecule,

depolarize the muonium. The contamination of O2 at a level of a few ppm might

destroy the resonance signal. To reduce the impurity, we bake the chamber and the

panel with at 150 ◦C for 24 hours. After the baking, the chamber and the panel are

evacuated first by a scroll pump (SP) and then by a turbo molecular pump (TMP)

to ≈10−5 Pa. The whole gas system is then filled with krypton gas. To reduce the

effect of the impurity, krypton gas in the chamber is exchanged once a day.

The temperature of the gas in the chamber is monitored by a thermocouple.

Since there is no water cooling available for the current setup, over the scan of a

resonance curve, the fluctuation of the temperature is about 1 ◦C. The systematic

effect from the fluctuation of the temperature will be discussed in the chapter 5.
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Figure 3.13: Aluminum foil for the forward flange of the gas chamber. The muon

beam is injected through this foil. To avoid the loss of the muon from scattering,

the thickness of the foil is suppressed to 0.1 mm.
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3.5 Microwave System and Cavity

3.5.1 Microwave Circuit

Figure 3.14: A schematic drawing of the microwave system. A microwave from

a signal generator is amplified, then fed to the cavity. The small portion of the

power is measured by a power monitor, and the total power induced at the cavity

is determined.

To induce the hyperfine transition, microwave with a frequency near 4.46 GHz

is used. A schematic view of the microwave system is shown in Fig. 3.14. The

microwave is generated by a signal generator (R&S SMB 100A, with the option of

SMB-B106) and amplified by four amplifiers (mini-circuit ZVE-8G+). The signal

generator has an oven-controlled crystal oscillator (OCXO) as the frequency refer-

ence (frequency error is less than 10−8). Each amplifier is attached to a heat sink

to suppress the temperature increase of the amplifier. After the amplification, the

microwave power is approximately 8 W.

After the amplification, the microwave was divided into a small fraction (-30

dB) using a directional coupler (PE2203-30) and the small fraction is monitored

by a power detector (R&S NRP18T or mini-circuit ZX47-55-S+). The remaining

microwave is supplied to the cavity through co-axial cables and a feedthrough flange

on the chamber. We feed the microwave through a loop-antenna inside the wall of

the cavity (Fig. 3.15). Due to the power loss during the propagation, the microwave

power at the entrance of the cavity is approximately 1.0 W.

In order to reduce a systematic effect from the drift of the number of muons in

one pulse, microwave is switched every pulse, as shown in Fig. 3.16. This switching
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Figure 3.15: A loop-antenna for microwave input. The antenna is attached to the

cavity by a supporting board also made of copper. The board also serves as a small

portion of the cavity wall and can be fixed by three screws. We feed microwave

through an SMA connector on the other side of the board.

sequence also reduces the heating of the cavity due to the energy loss at the cavity

surface, compared to the case the microwave is always ON. The heating expands

the cavity and changes the frequency characteristics of the cavity, and effective

microwave energy stored in the cavity. The reduction of heating also suppresses the

related systematic effect.
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Figure 3.16: Schematic drawing of the microwave switching sequence. To reduce

systematic effects, microwave is switched ON or OFF for every pulse. Also, this

sequence reduces the heating of the cavity due to the microwave loss at the cavity

surface.
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3.5.2 Microwave Cavity

We will describe two different cavities, but they share some similarities. They are

all cylindrical and they are made of oxygen-free copper with a purity of 99.97%. To

suppress the injected muon loss while containing the microwave efficiently, a copper

foil with a thickness of 25 µm is attached to each end of the cavities.

As mentioned in the Sec. 1.4.2, our pilot measurement found the loss of the

statistical power since many muons stopped in the wall of the cavity. The old

cavity with TM110 mode has a diameter of 81 mm. To prevent injected muons

from stopping in the wall of the cavity and increase the statistical sensitivity of the

experiment, we develop a larger cavity with TM220 mode.

The new cavity with TM220 mode was designed with another purpose, which

is to enable us to measure MuHFS with lower Kr gas pressures. The old TM100

cavity has a longitudinal length of 230 mm. The lower the Kr pressure is, the

wider the muon longitudinal distribution inside the cavity becomes. Consequently,

more muons stop on the foils at each end of the cylindrical cavity. To achieve the

measurement at lower gas pressures without losing the muons by stopping in the

cavity foils, we decided to design the new cavity with a larger length.

Figure 3.17: Magnetic field distribution for different TM modes calculated from

analytical equation. The red color indicate strong magnetic field, and the blue color

indicate weak magnetic field.

In general, a cavity with higher resonance mode and longer length suffers mode

interferences from adjacent resonance modes. We have to confirm the frequency of

the TM220 mode is well isolated from the frequencies of other modes before making

a cavity. The resonance frequency of the TM mode in ideal case is written by

fnmp =
c

n

√
(
xmn

πD
)2 + (

p

2L
)2, (3.5)

where n, m, p are subscripts describing TM npm mode, c is the speed of light, D

and L are the diameter and the longitudinal length of the cavity, and xmn is the n-th

root of the Bessel function Jm(x). The magnetic field distributions for different TM

modes are shown in Fig. 3.17. For our experiment, we need to vary the resonance
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frequency in order to obtain the resonance curve. We insert a tuning rod made of

aluminum and vary the position of the rod to effectively alter the diameter of the

cavity. Therefore, we should also consider the effect of the tuning rod for various

positions. We use CST microwave studio by Computer Simulation Technology to

simulate the resonance frequency in order to determine the diameter and the length

of the new cavity, and to confirm the frequency is tunable by the rod and the

resonance frequency is isolated by other modes.
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Figure 3.18: Magnetic field strength calculated from analytical equation for the ideal

TM220 mode cavity (left) and the simulated magnetic distribution (right). For the

left figure, the red color indicate strong magnetic field, and the blue color indicate

weak magnetic field. For the right figure, larger arrow indicates stronger magnetic

field.

We started the simulation with the ideal case, no tuning rod inside. The magnetic

field simulation agrees the field calculated from the analytical equation, as shown

in Fig. 3.18. Then we simulated the resonance frequencies of cavities with different

diameters and lengths, varying the position of the tuning rod. The result in the

case of D = 93 mm and L = 300 mm is shown in Fig. 3.19. The vertical axis

shows the frequency offset from 4462 MHz and the horizontal axis indicates the

relative position of the tuning rod, positive value meaning the rod is more inside

the cavity. The red points indicate the resonance frequency of the TM220 mode,

and the blue points indicate the resonance frequencies of the adjacent modes. The

4 MHz isolation in the worst case is sufficient for the measurement. The dashed

black line indicates the frequency scan range (4 MHz), which is much larger than

the natural linewidth (145 kHz) expected from the muon life. It was confirmed that

we can tune the resonance frequency of TM220 mode and cover the required scan

range by moving the tuning rod.
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Figure 3.19: Simulation result of the mode isolation of a new cavity. The vertical

axis shows the frequency offset from 4462 MHz and the horizontal axis indicates the

relative position of the tuning rod, positive value meaning the rod is more inside

the cavity. The red points indicate the resonance frequency of the TM220 mode,

and the blue points indicate the resonance frequencies of the adjacent modes. The

TM220 mode is isolated from the adjacent modes by more than 4 MHz. The dashed

black line indicates the frequency scan range (4 MHz), which is much larger than

the natural linewidth (145 kHz) expected from the muon life. The TM220 mode is

isolated from the adjacent modes by more than 4 MHz.
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Figure 3.20: Simulated distribution of the muon stopping position inside the TM220

cavity using GEANT4 in the case of Kr pressure = 1.0 atm. The color spectrum

indicates the number of the muon stopped at 1 mm × 1 mm area per pulse. The

black line indicates the dimension of the old TM110 cavity.

We compare the stopping distribution of the muon inside the cavities using a

simulation using GEANT4 [79]. The simulation is validated by the muon beam

profile measurement, which will be described in Appendix A. Figure 3.20 shows the

muon stopping distribution inside the TM220 cavity when the muon momentum is

27.4 MeV/c. The color spectrum in z-axis shows the number of the muon stopped

at 1 mm × 1 mm area per pulse. The black line indicates the dimension of the

old TM110 cavity. In the case of the old TM110 cavity, only 40% of the injected

muon stop inside the cavity, while 90% of the muon stop inside the new TM220

cavity. Figure 3.21 is the muon distribution when Kr pressure is 0.3 atm and the

muon momentum is 26.5 MeV/c. Only 21% of the injected muon stop in the TM110

cavity, while 61% stop inside the TM220 cavity.
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Figure 3.21: Simulated distribution of the muon stopping position inside the TM220

cavity using GEANT4 in the case of Kr pressure = 0.3 atm. The color spectrum

indicates the number of the muon stopped at 1 mm × 1 mm area per pulse. The

black line indicates the dimension of the old TM110 cavity.
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Figure 3.22: Comparison of the old TM110 cavity and the new TM220 cavity.

After the confirmation of the statistical improvement using GEANT4, we made

the new TM220 cavity. The comparison of the two cavities is shown in Fig. 3.22.

We measured the frequency characteristic of the new cavity using a Vector Network

Analyzer (VNA). We tune the resonance frequency by varying the position of the

tuning rod, which is attached to a piezo motor (Fig. 3.23). Figure 3.24 shows the

inside of the cavity installed in the gas chamber. By measuring the reflections and

transmissions of an input port and an output port, we can determine the frequency

characteristics and the Q value of the cavity (Fig. 3.25). The Q value is an index

which indicates how well the microwave energy is stored in the cavity. Figure 3.26

shows the resonance frequency of the cavity when the tuning rod is moved. The

range covered by the resonance frequency is sufficiently broad to realize the MuHFS

measurement.
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Figure 3.23: Piezo motor used for tuning the resonance frequency of the cavity
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Figure 3.24: Inside of the cavity. The tuning rod is attached to the piezo motor

which is cover by an aluminum container.
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Figure 3.25: Schematic diagram of the Q factor measurement using Vector Network

Analyzer (VNA).

Figure 3.26: The resonance frequency of the TM220 mode for different tuning rod

position measured by a VNA.
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3.6 Positron Detector System and Data Acquisi-

tion System

Positron counters are made of pairs of a finely segmented scintillator and a silicon

photomultiplier, Multi-Pixel Photon Counters (MPPC) by Hamamatsu Photonics

K.K., S12825-050P-01. The scintillators are EJ212 by Elgen with a fast decay

constant (2 ns) and emission wavelengths around 450 nm. Each scintillator pixel

is 10 mm×10 mm square-shaped, with a thickness of 3 mm. For each scintillator

segment, an MPPC is attached. One MPPC has 667 Avalanche Photodiodes (APD)

in the 1.3 mm×1.3 mm square active area. Each pair of the scintillator and the

MPPC consist one unit pixel. 24×24 pixels are aligned two-dimensionally in each

layer of the detector, as shown in Fig. 3.27. We used two layers of the positron

detector in this experiment. Between each pair of the adjacent scintillation pixels, a

slice of the light-reflective film was inserted in order to suppress the optical cross-talk

between the pixels.

The signal from MPPCs is read out by a KEK Kalliope board which consists of a

fast read amplifier based on ASIC and multi-hit Time-to-Digital Converter (TDC)

in FPGA. The diagram of the digital part of the readout is shown in Fig. 3.28.

The digital part is used as multi-hit TDC with a time resolution of 1 ns. Once it

starts taking the data, the timing window is open for 64 µs, which is sufficiently long

compared to the muon lifetime (2.2 µs) and sufficiently short compared to the muon

pulse interval, 25 ms. One Kalliope board has 24 channels, so we use 48 boards in

total to read the signals from 24×24×2 = 1152 MPPCs. We employ the bitwise

coincidence of the pulses from accelerators and the ready signal from the FPGAs on

the Kalliope boards as the trigger signal.

The trigger system is shown in Fig. 3.29 [54]. The TDC data from Kalliope

boards are sent to a data acquisition (DAQ) computer. Gas pressure gauge, magnetic

field monitor and power sensor is also read out by another PC. The temperature

data from the thermocouples are recorded by a data logger (Graphtec midi logger

GL240).
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Figure 3.27: One layer of the positron counter. Each layer is made of 24×24 pixels.

Each pixel is made of a pair of a 10 mm×10 mm scintillator and an MPPC.

Figure 3.28: Diagram of the digital part of the readout [54]
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Figure 3.29: Schematic diagram of the trigger system [54]. The pulses synchronized

with the accelerator is fed to the trigger distributor. The trigger is on by taking

the coincidence of the accelerator signals and the ready signal from FPGA on the

read-out board.
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Data Analysis

4.1 Data Set

In the allocated beam time of June 2018, we have measured MuHFS with Kr pres-

sures from 0.3 to 0.4 atm at experimental area D2 in J-PARC MLF. In addition to

these data in June 2018, the result obtained from the analysis of the data at 1.0

atm (June 2017) is used to take the extrapolation to the MuHFS value at zero Kr

density.

We analyze the data for 3 days in June 2018. The proton beam power during the

beam time was 500 kW. Figure 4.1 shows the number of positron counted per pulse

for each layer of the detector. Figure 4.2 shows the zoomed view of the previous

plot. There are some pulses with no positron hits recorded. This is due to the

proton beam extraction to another accelerator ring, the Main Ring (MR), for other

experiments on neutrinos or hadrons. The number of the extracted pulses are fixed

to four. The interval of the extraction depends on the operation mode of the MR.

When there is some problem with the accelerator, the operation is halted. Figure

4.3 shows the positron hits when such a beam lost occurs. These pulses with no hit,

because of either the beam lost or the MR injection, are omitted from the analysis.

4.2 Data Analysis

4.2.1 Workflow

Fig. 4.4 shows the workflow of the analysis. We employ a C++ based data analysis

tool called ROOT CERN [80]. We obtaind raw data as binary files. To suppress

the consumption time for the later process, we convert the data into a ROOT-

friendly binary file (*.root) while omitting some of the background hits which reach

the detector much earlier than the decay positrons from the muons. Most of these

omitted background hits account to the prompt positron produced at the muon

production target. During the extraction, we also rewrite the data structure to
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Figure 4.1: The number of hits per pulse for each layer of the detector. The red

upper triangle indicates the number of hits in the first layer, and the blue one

indicates the number of hits in the second layer.

make the time devoted to later analyses faster. We call this process ”branching”

which will be explained in detail later.

There are some hits make ”clusters”, meaning one positron causes signals at

more than one pixel of the scintillator at the same time (see Fig. 4.5). One needs to

combine these hit and count them as one hit, in order to avoid overcounting the num-

ber of hits. This combining process is called ”clustering”. After the clustering, the

next step is taking the coincidence between the two layers of the positron counters

to omit background hits. We do not have information such as time-over-threshold

(TOT) to omit the background hits.

4.2.2 Extraction and Branching

The first step of the data analysis is the extraction and branching. This step is of

importance for reducing the data size and the time consumption for later analyses.
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Figure 4.2: The change in the number of the hits due to the MR injection. Occa-

sionally, the proton beam is extracted to the Main Ring (MR) in J-PARC for other

experiments. The number of the extracted pulses are always four. The interval of

the extraction depends on the MR operation mode. The pulses with no hits are

omitted from the analysis.

Some of the hits are artificial and we need to omit those hits. In the process, we have

to merge several hits into one hit (”clustering”) or make a pair of hits penetrating

the two layers of the detector (”coincidence”). When one searches pairs of hits from

N candidate hits, the expected time to spend is proportional to N2. The time

consumption was not a serious problem in the pilot measurements: it was possible

to analyze the data with a time comparable to the time we spent to collect the data.

In the case of the current measurement, the number of the hits per pulse is larger

since the proton beam power at J-PARC was 500 kW, at least 2.5 times higher

than the previous measurements by MuSEUM. This means the time consumption

for analysis becomes at least 5 times larger. This means the time for analyzing

the data collected in several days now would amount to several weeks if there is no

change in the analysis method. For the future experiment in H-Line, 20 times more

muon per pulse is expected and the data taking is expected to last 100 days. The

problem of reducing the analysis time becomes crucial for the measurement with
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Figure 4.3: In additional to MR extraction, the beam pulses are sometimes lost due

to the accident in the accelerator components. The pulses with no hits due to the

beam lost are omitted from the analysis.

high statistics.

We obtain the data as a set of information of when a positron hits which channel

of the detector. A typical raw time spectrum of the positron decay is shown in Fig.

4.6. The horizontal axis is the elapsed time from the trigger by the accelerator.

There are two peaks due to the prompt positron bursts from the muon production

target, which managed to penetrate the ~E × ~B filter. After the second peak, we the

exponential decay of the hits, which corresponds to the muon lifetime. These hits

are the decay positrons from the injected muons.

In order to make the later analyses faster, we need to select the hits only from

muon decay. Figure 4.7 shows the zoomed view of the raw time spectrum. Most of

the prompt positrons hit earlier than 10850 ns. Thus, we only extract hits after 10850

ns, to reduce the size of the new file smaller. The time spectrum after extraction is

shown in Fig. 4.8.

By extraction, we can effectively omit the background hits but the number of

hits is reduced to only 90% by this method. This corresponds to 19% reduction of

the analysis time. The next step called branching is a method reducing the analysis

time without reducing the data size itself.

Combined with the extraction, we rewrite the data structure into small branches
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Figure 4.4: Workflow in the analysis

so that data analysis becomes faster. This process is called branching (Fig. 4.9). We

prepare a branch for each detector channel, which indicates the x and y positions of

a certain hit. Then each hit is attributed to one branch according to the channel.

After the branching, we have 1152 branches and each branch is just a series of the

number indicating the hit time. The nth number of a branch is the hit time of the

nth hit in the corresponding channel.

A previous analysis method applied in the analysis of the pilot measurement was

without branching, and all the hit was grouped into one stack. The stack is a long

list of the hit information, the hit time and the hit positions. By branching, roughly

1/1152 of the hits are in one branch. This makes the number of the hits under pair

search drastically small.

The hit position of the first layer is shown in Fig. 4.10. The number of the
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Figure 4.5: An example of a cluster. There are two hits in the two adjacent pixels

in a short time interval (in this case the interval is 5 nsec). In this time region

(approximately 22 µs after the muon arrival), the number of the hits expected during

5 nsec interval for one layer of the detector is 1 hit per 3000 pulses. Therefore, it is

unlikely that these two hits were accidentally caused by two different positrons.

hit are normalized by the number of the beam pulse. There are several pixels not

recording hits, which is an already-known problem in pilot measurements. Figure

4.11 shows the one-dimensional projections of the hit map.

For later analysis steps, the time resolution of the detector is important. We

can check the time resolution from the time difference of the hits by a positron

perpendicularly penetrating the two layers of the detectors. The second layer is 10

cm apart from the first layer, and a positron with a speed near the speed of light

need less than a nanosecond to penetrate the layers. In order to avoid accidentally

counting two hits due to two different positrons, we only consider the positron hits

15 µs later than the muon arrival. If there are two hits, satisfying the condition

below, we consider them as the penetrating hits: first, they are from two different

layers, second, they are from the same hit positions (hit position x and y are the

same), and finally, their hit timing is within 50 ns range.

Figure 4.12 shows the time difference of such hits. The analysis is made for 20000

pulses. The time resolution is a Gaussian-like structure with σ = 5 ns. Most of the

data are within ± 15 ns range. Thus in later analysis steps, we often set the time

difference condition for pairing hits as ± 15 ns.

Figure 4.13 shows the time resolution for each detector channel. The resolution
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Figure 4.6: Raw time spectrum. The horizontal axis is the elapsed time from the

trigger by the accelerator. The number of the hits is normalized by the number of

the pulse. The two peaks are caused by the prompt bursts of the positrons.

is dependent on the channels, but the resolutions of most of the channels are in the

region of from 3.5 ns to 5.5 ns, as shown in Fig. 4.14.
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Figure 4.7: Raw time spectrum with a zoomed view. The horizontal axis is the

elapsed time from the trigger by the accelerator. The number of the hits is normal-

ized by the number of the pulse. The two peaks are caused by the prompt bursts of

the positrons.
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Figure 4.8: Typical time spectrum after data extraction.

Figure 4.9: Branching. By branching, we redefine the data structure so that the later

analyses become less time-consuming. Without branching, all the data is contained

in one stack. The branching process allocate all the positron hits in one pulse into

1152 small stacks, according to their hit positions in the x-y plane of the detector

layer.
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Figure 4.10: The hit position of the first layer of the detector. The number of the

hit is normalized by the number of the beam pulse.

Figure 4.11: The hit position of the first layer of the detector and the projection to

each axis. The number of the hit is normalized by the number of the beam pulse.
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Figure 4.12: Time difference of the hits which are caused by a positron perpendic-

ularly penetrating the two detector layers
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Figure 4.13: The time resolution for different scintillator positions. The resolution

has a tendency that the resolution is narrower for the detector channels in the center

of the detector. There is no significant deviation of the time resolution for different

detector channels.
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Figure 4.14: Histogram of the time resolution for different detector channels, i.e.,

the z-axis projection of the Fig. 4.13. There is no detector channel with a time

resolution significantly deviated from the time resolutions of the other channels.
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4.2.3 Clustering

Figure 4.15: The size of clusters. The size of a cluster is defined to be the number of

hits consisting the cluster. The vertical axis is normalized by the number of pulses.

To avoid counting piled-up different true hits as one cluster, this size check has been

done for the hits 16 µs after the muon arrival.

As mentioned earlier, there is a set of hits caused by one positron, which is

called a ”cluster”. Such a cluster should be counted as one hit. The next step of the

analysis is clustering, which checks the hits in one layer of the detector, and merges

some of the hits into one cluster according to certain criteria.

To make the criteria for clustering, we first study the characteristic of the hits

by a single positron. In the early time window, there are multiple positron hits due

to the pulse structure of the muon beam. This is not desirable for studying hits

from single positron, so we focus on the hits which are at least 16 µs later than the

muon arrival. In this time region, the hit rate at one layer (576 pixels) in a 30 ns

time interval is at most 0.03 hit/pulse, which is sufficiently low.

In this time region, the hit rate is sufficiently low and almost all the hits are from

single positron. If there are multiple hits in 30 ns time interval, the hits are clusters.
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Figure 4.16: The hit positron difference of the hits consisting one cluster. The text

in a cell indicates the probability of such pairs of hits in percentage. Most of the

hits come adjacent hit positions. To avoid counting piled-up different true hits as

one cluster, this hit position check has been done for the hits 16 µs after the muon

arrival. We set the clustering condition is that the two hits are within 7×7 region,

shown as the red rectangle.

We define the size of a cluster by the number of the hits consisting the cluster, and

Fig. 4.15 shows the cluster size distribution. The cluster size one means they are

made of only one hit, which is an ordinary hit. There are clusters with a size larger

than 2, and the number of the clusters with size N + 1 is approximately 0.2 times

of the number of the clusters with size N . The size of the 96% of the clusters are

one or two, and the size of the 99.1% of the clusters are less than or equal to three.

Next, we study the hit position differences between hits making a cluster. As

mentioned before, we select hits 16 µs after the muon arrival. Figure 4.16 is a

two-dimensional histogram of the hit position difference between two hits making a

cluster. The color and the text in a cell indicates a probability in percentage. Most

of the pairs of hits come adjacent positions. The probability of 3×3 area around the

center, however, is small and amounts to 73% of the clusters in total. 5×5 area has
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83% of probability, 7×7 area has 90% of probability, and 9×9 area has 91%. Thus,

we set the condition of clustering such that if two hits are within 15 ns and within

the 7×7 area.

We define the hit position of a cluster as the center of gravity of the consisting

hits, i.e. if we have a pair of the hits and the first hit A has a position of (xA,yA)

and the second hit B has a position of (xB,yB), then the cluster position (xcl,ycl)is

defined as

(xcl, ycl) =
(
xA + xB

2
,
yA + yB

2

)
. (4.1)

The hit timing of a cluster is also defined as the average of the hit timing of the

consisting hits.

Figure 4.17: Time spectrum after clustering.

Figure 4.17 shows the time spectrum after the clustering. The hits are normalized

by the number of the pulse. The bin width is 30 ns. The hit positions of the clusters

are shown in Fig. 4.18. Here, the term cluster also includes those made of only one

hit (cluster size one). Note that the cluster hit position was defined as the center of

gravity of the consisting hits, therefore there is a small but non-zero number of hits

in a pixel which had no hits before the clustering.

98 Sec. 4.2



CHAPTER 4. DATA ANALYSIS

Figure 4.18: hit position distribution after clustering. The hit is normalized by the

number of the muon pulse.
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4.2.4 Coincidence

Figure 4.19: The hit positron difference betweeing the hits making one coincidence

hit. The texts in a cell indicates the probability of such hits in percentage. To avoid

counting piled-up different true hits as one coincidence hit, this hit position check

has been done for the hits 16 µs after the muon arrival. We set the coincidence

condition is that the two hits are within 9×9 region, shown as the red rectangle.

After the clustering, we have to take a coincidence between the two layers. The

coincidence pair between two layers is determined by certain criteria. The criterion

for hit time difference is set to be ± 15 ns. To obtain the criterion for the hit

position, we study the hit position difference of the first layer and the second layer.

The both of hits should be from the same positron penetrating the two layers, so we

made a selection of hits 16 µs after the muon arrival time. The selection is similar

to the one we made in establishing the criteria for clustering.

The hit position difference of the two hits from single penetrating positron is

shown in Fig. 4.19. The number of hits is the sum of 25700 pulses. The probability

of 3×3 area around the center amounts to 33% of the clusters in total. 5×5 area

has 55% of probability and 7×7 area has 75% of probability. 9×9 area has 87% of
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probability, and 11×11 area has 91% of probability. Unlike the hits making a cluster,

the hits making a coincidence in two layers have a tendency to be separated. Thus

we regard two hits as a coincidence hit if the hit time difference of the two is within

15 ns and the hit positions are within 9×9 area.

Figure 4.20: Time spectrum after taking the coincidence.

Figure 4.20 shows the time spectrum after taking the coincidence. The hit num-

ber is normalized by the number of the pulse.
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4.2.5 Time-Dependent Signal

One can determine the true counts of the detector after the coincidence. The signal

is written as

S =
(
NON −NOFF

NOFF

)
(4.2)

as defined in the section before, where the NON is the counts when the microwave is

on, and NOFF is the counts when the microwave is off. The obtained time-dependent

signal when the microwave frequency is on resonance is shown in Fig. 4.21. The

signal clearly deviates from the zero. We also obtain the time-dependent signal when

the microwave is very far from the resonance, 1.2 MHz away. The off-resonance signal

is shown in Fig. 4.22. The signal is consistent with the zero.

Figure 4.21: Time-dependent signal when the microwave is on resonance. The

horizontal axis shows the elapsed time after muon arrival. The vertical axis is the

signal. Non is defined as the number of hits when the microwave is ON while Noff

as the number of hits when the microwave is OFF.
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Figure 4.22: Time-dependent signal when the microwave frequency is far from the

resonance (-1.2 MHz). The horizontal axis shows the elapsed time after muon arrival.

The vertical axis is the signal. Non is defined as the number of the hits when the

microwave is ON while Noff as the number of the hits when the microwave is OFF.
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4.2.6 Resonance Line

By integrating the number of hits when the microwave is on and compare them to

the integrated counts when the microwave is off, we can obtain the resonance line.

As discussed in Chap. 2, we used the old muonium method, so we integrated the

positron counts in a certain time window, to obtain the narrower resonance line.

In this analysis, we integrated the signal in the time interval from 2 µs to 6 µs.

Some of the data sets in 0.4 atm are not appropriate for the old muonium method

since the microwave power was higher than the optimum. These data sets were

primarily used for the search of the optimal power. These data sets were analyzed

using the conventional method, i.e., the positron signal was integrated over the all

time interval.

We use the theoretical resonance line shape as the fitting function. The resonance

line for the conventional method is shown in Eq. 2.83 and the resonance line for the

old muonium method is in Eq. 2.84. To correct the microwave power variation run

by run, we rewrite the microwave parameter b in the fitting function as

b = baveRrun, (4.3)

where bave is the average microwave parameter, which is treated as a free parameter

in the fitting, and the Rrun is a run-dependent scaling factor, which is determined

by the measurement of the microwave cavity characteristic. The Rrun parameter is

fixed in the fitting.

The χ2 function for the fitting is

χ2 =
∑
i

Sexp(ωi)− S0Sth(ωi)

σ(ωi)

2, (4.4)

where Sexp(ωi) is the experimental signal, Sth(ωi) is the theoretical signal, σ(ωi) is

the statistical uncertainty, S0 is the scaling factor.

The obtained resonance curve when the Kr pressure is 0.3 atm is shown in Fig.

4.23. The vertical axis is the signal defined as in Eq. 4.2. The horizontal line is

the frequency offset from 4 463 302 kHz. One can clearly see more signal when the

microwave is on-resonance, and less signal as the microwave frequency is set to be

far. The fitting result is shown as the red line in the figure. The fitting program is

based on the CERN MINUIT package [81].

We have also conducted the measurements at other gas pressures. Fig. 4.24

shows the result from the measurement with Kr pressure 0.4 atm. The red line

indicates the resonance line fit.

Table 4.1 shows the summary of the results of the center frequency obtained by

the fit to each data sets. The data in 1.0 atm (run number 07) is from the previous

measurement by MuSEUM [55].
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Figure 4.23: The resonance line observed at 0.3 atm.

4.2.7 Gas Pressure Extrapolation

To obtain the frequency of the muonium hyperfine structure interval at vacuum, one

need to extrapolate the obtained results in several pressure points, as described in

Fig. 4.25. There is a systematic effect from the uncertainty of the pressure gauge,

which will be discussed in the latter section.

We obtain two resonance curves at 0.3 atm and four resonance curves at 0.4 atm.

Combined with the result obtained by the pilot measurement at 1.0 atm, we have

seven datasets at various pressures in total. The data points at each pressures are

averaged (Fig. 4.26 and Fig. 4.27). We correct the gas density at T = 0 ◦C, and

extrapolate the results to the value at the zero density, as shown in Fig. 4.28. The

fitting function is

f(D) = f(0)(1 + aD + bD2), (4.5)

where D is the gas density of the krypton at 0 ◦C. Here we use amagat as the unit

of the density1. The temperature correction is discussed in the next chapter. There

is a small quadratic term b in the pressure dependence of the frequency, which was

measured by precursor experiment [20]. The parameter was fixed to the previously

1amagat is the unit of the density normalized to the density of the gas at 1 atm, 0 ◦C.
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Figure 4.24: The resonance line obtained with krypton gas pressure 0.4 atm.

measured value,

b = (9.7± 2.0)× 10−15 Torr−2 (4.6)

= (5.7± 1.3)× 10−9 atm−2. (4.7)

There is a small quadratic term b in the pressure dependence of the frequency. The

effect of the uncertainty from the quadratic term is discussed in the later section.

The obtained MuHFS frequency in vacuo is

∆νfit = 4.463 3055(23) GHz, (4.8)

Table 4.1: Data Summary. Summary of the fit results for obtained resonance lines.

Run number Gas pressure Center Frequency [kHz] Uncertainty [kHz]

01 0.4 atm 4 463 279.57 7.02

02 0.4 atm 4 463 293.10 8.90

03 0.4 atm 4 463 287.81 9.57

04 0.4 atm 4 463 291.17 1.24

05 0.3 atm 4 463 292.57 1.79

06 0.3 atm 4 463 288.43 5.04

07 1.0 atm 4 463 265.84 3.10
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Figure 4.25: Concept of the gas pressure extrapolation and the systematic uncer-

tainty from the precision of the gauge.

where the number in parentheses indicates the statistical uncertainty from the ex-

trapolation. The obtained linear pressure dependence term a from the fit is

a = −(9.3± 1.2)× 10−6 atm−1. (4.9)

The linear dependence apre obtained by the precursor experiment in high field at

LAMPF [51] is

apre = −(1.0627± 0.0024)× 10−8 torr−1 (4.10)

= −(8.077± 0.018)× 10−6 atm−1. (4.11)

We also note that the hydrogen hyperfine pressure shift in krypton was also inves-

tigated by optical pumping [82], and yielded a similar value,

aH−HPS = −(1.04± 0.02)× 10−9 torr−1 (4.12)

= −(7.9± 0.2)× 10−6 atm−1. (4.13)

The result obtained by our measurement is consistent with the value obtained

at LAMPF within 2σ. We can also obtain the frequency in vacuum by using the

data obtained by LAMPF [20] (Fig. 4.29), and the result is

∆νcomb = 4.463 3029(8) GHz, (4.14)
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Figure 4.26: Averaging data points at 0.4 atm. The data points are the fitting result

of the each run, and the red line is the averaged value.

where the number in parentheses indicates the statistical uncertainty (1σ) from the

extrapolation, which is smaller than the case of the previous case. The obtained

linear pressure dependence term a from the fit is

a = −(8.2± 0.5)× 10−6 atm−1. (4.15)

The obtained quadratic pressure dependence term b from the fit is

b = (6.6± 0.9)× 10−9 atm−2. (4.16)
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Figure 4.27: Averaging data points at 0.3 atm. The data points are the fitting result

of the each run, and the red line is the averaged value.
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Figure 4.28: Gas pressure extrapolation. The data points are the result of the

spectroscopy in various pressures. The red line is fit result by the function

f(D) = f(0)(1 + aD + bD2) where b is fixed to the value obtained by the pre-

vious measurement, b = 5.7× 10−9 atm−2.
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Figure 4.29: Gas pressure extrapolation combined with LAMPF data [20]. The red

line is fit result by the function f(D) = f(0)(1 + aD + bD2).
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Result

5.1 Discussion of the Systematic Uncertainty

5.1.1 Gas System

The collision of a muonium atom with Kr atoms can shift the hyperfine frequency.

The general review of the HFS pressure shift in gas has been reviewed by Happer in

[83]. The two-body collision between Kr and Mu, which cause the frequency shift

which is linearly dependent on the pressure. There is three-body interaction whose

effect is proportional to the square of the krypton density.

The gas pressure was monitored by the capacitance gauge on the gas handling

panel every ten seconds, while the temperature was monitored every second. The

averages of these readings are taken for the resonance line.

Temperature

First, the pressure at T = 0 ◦C is calculated from the real gas equation

(P +
av
V 2

)(V − bv) = RT (5.1)

where P is the pressure, V is the molar volume, R is the molar gas constant. The

van der Waals constants av, bv are [84],

av = 2.325 bar L2/mol (5.2)

and

bv = 0.0396 L/mol. (5.3)

Using the equation above, we calculate the pressure at T = 0 ◦C. The correction

is already implemented in the figures and results in Sec. 4.2.7. Figure 5.1 shows

the temperature in a day. There are some effect on the gas temperature from the

temperature from the experimental hall. The systematic effect of the temperature

variation is included in the variation of the gas pressure, which will be discussed in

the next section.
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Figure 5.1: Temperature variation. The green points are the temperature in the

experimental hall. The red points are the data in the magnetic shield and out of

the gas chamber. The blue points indicate the gas temperature in the gas chamber.

Due to the cooler for detectors, the temperature in the shield is lower than those

in the experimental hall. There is a rise in temperature in the experimental hall

after 5 p.m. (17:00) when the coolers in the hall are stopped automatically. As

a consequence, the gas temperature also rises after some time. The temperatures

decline after 9 a.m. when the coolers are activated. The cooler inside the shield was

always on during the data taking.

Gas Pressure Fluctuation

Figure 5.2 shows the typical fluctuation of the monitored gas pressure. During the

measurement, typically ± 100 Pa fluctuation at maximum in a day was observed.

This fluctuation includes the temperature drift. We correct the change from the

temperature variation and calculate the residual gas pressure variation. Figure 5.3

shows the distribution of the corrected gas pressure during the two days of 0.4 atm

measurement. The standard deviation is 68 Pa, and for the other measurements, the

standard deviation is smaller than 68 Pa. We account the pressure shift resulting

from the 68 Pa change as the systematic uncertainty, i.e., 24 Hz.
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Figure 5.2: Gas pressure variation in one day monitored by the capacitance gauge.

The variation includes the change due to the temperature variation.

Uncertainty in the Gas Pressure Gauge

We used the capacitance gauge which has an accuracy of 0.2% full scale. Thus we

have the uncertainty in gas pressure δP = 0.002 atm. We reanalyze the gas pressure

extrapolation after a shift ±δP is introduced to the data set and obtain

δνδP = ±79 Hz. (5.4)

We conclude the systematic uncertainty is 79 Hz. In the future, this uncertainty is

readily improved by using a pressure gauge with an accuracy of 0.01%.

Uncertainty from the Quadratic Term

There are quadratic term arising from the three-body interaction of Mu and Kr. We

use the most precise measurement of the parameter [20] for the fit of ∆νfit,

b = (9.7± 2.0)× 10−15 Torr−2 (5.5)

= (5.7± 1.3)× 10−9 atm−2 (5.6)

The effect of the uncertainty in the expression above is estimated by reanalysing

the gas pressure extrapolation using different parameters for b,

bupper = 7.0× 10−9 atm−2 (5.7)

blower = 4.4× 10−9 atm−2. (5.8)
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Figure 5.3: Gas pressure variation after the temperature correction. The standard

deviation of the gas pressure is accounted as the source of the systematic uncertainty.

The deviation from the original result ∆νfit is ±2 Hz. Note that the uncertainty is

smaller than the corresponding uncertainty at the precursor experiment [19] by a

factor of two, since we succeeded in the measurements at lower krypton pressures.

Gas Impurities

Gas impurities were measured by QMASS before the experiment. The gas inside

the chamber was exchanged after 24 hours. The contamination of H2 and O2 after

24 hours was estimated to be at most 1 ppm. The muonium HFS shift in hydrogen

was estimated by Liu in [51] to be

∂∆ν

∂PH

≈ 16 kHz/atm. (5.9)

The 1 ppm contamination of hydrogen in 1 atm krypton gas corresponds to the

frequency shift of 0.016 Hz, and it is negligible.
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5.1.2 Microwave

Signal Generator and Frequency Reference

The signal generator used in this experiment has a reference OCXO, and its fre-

quency is calibrated with a precision of 10−8, 45 Hz. Frequency drift from aging is

less than 10−9 per day, which is negligible. We account 45 Hz as the corresponding

systematic uncertainty for MuHFS. In the future, a frequency reference using GPS

(Global Positioning System) will ameliorate the uncertainty. We abdicated the in-

stallation of the GPS antennae on the outer wall and the signal cable through a

hole on the wall for the experimental hall No.2, where the experimental area D2 is

located, due to the severe limitation from radiation safety in the hall. For the new

beamline H1 in the experimental hall No. 1, the installation of the GPS antennae

and the signal cable is ongoing.

Figure 5.4: Q values for different frequencies. Due to the thermal expansion of

the cavity from microwave power or other factors, Q value varies in time, and two

measurement result in the same frequency are not always identical, although the

fluctuation is small (± 1.5%).
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Microwave Power Drift

In the measurement, we spent approximately 20 minutes or less for each frequency

point, and then move on to the next frequency. If the microwave power changes for

different microwave frequencies, the effect would distort the resonance line shape,

and shift the center of the resonance. The typical microwave drift during the time

(20 min) was 1%. By randomly choosing the sequence of the frequency points,

we can suppress the shit caused by the power drift. The systematic uncertainty

caused by the power drift is estimated to be 60 Hz by the numerical simulation of

the resonance line shape with the power drift of 1% per frequency point. In the

future experiment, the systematic uncertainty can be suppressed by the feedback

of the microwave power, and by realizing the shorter measurement period for each

frequency point.

5.1.3 Magnetic Field

The magnetic field was measured before the beam time and typical value of the field

strength is 1 mG. This corresponds to the shift of ∆ν14 (∆ν34) by 1.4 kHz (-1.4 kHz),

which is relatively small to the natural linewidth 145 kHz. The effect is symmetric

and we conclude the effect is negligible.

5.1.4 Muon Beam

Beam Intensity Fluctuation

The muon beam intensity fluctuation between the beam pulses with microwave

ON and the beam pulses with microwave OFF may cause the change in the signal

height and may shift the signal center. The microwave is switched ON and OFF for

each pulse (25 Hz) in the measurement, and drastically suppresses the systematic

uncertainty caused by the beam intensity fluctuation. This is one of the major

accomplishment of the measurement in 2018. In J-PARC, proton beam power is

measured by the accelerator division. The typical intensity drift of the beam is

0.1% for ten minutes, and we assume the intensity drift in two pulses (in 80 ms) is

negligibly small. In the future, an online beam monitor using very thin scintillation

fibers can realize another method of the beam intensity measurement [54].

Muon Beam Profile

Change of the muon beam profile (e.g., a slight shift of the muon beam profile

center) during the microwave frequency scan result in the change of the microwave

field strength felt by muoniums, and this changes the resonance line shape. We

made the pre-measurement of the beam profile change in time using the beam profile

monitor described in Appendix A. No significant change of the profile observed with
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the monitor’s resolution of ±0.6 mm. This amounts to an effective change of the

microwave power by 0.1%, corresponding to the 6 Hz uncertainty from the shift of

the resonance center.

5.1.5 Others

Electric Field

There are several studies about the dependence of the hydrogen HFS interval on an

external electric field, [85, 86, 87, 88]. For the 1.4 GHz of the hydrogen HFS, the

theoretical and the experimental values for the shifts δνH with E in volts per meter

are

~E ‖ ~B Expt. δνH = (−8.37± 0.84)× 10−14 E2Hz (5.10)

Theory δνH = −8.47× 10−14 E2Hz (5.11)

~E ⊥ ~B Expt. δνH = (−8.45± 0.20)× 10−14 E2Hz (5.12)

Theory δνH = −8.24× 10−14 E2Hz. (5.13)

Assuming the fractional shits for the hydrogen HFS and the MuHFS are the same,

we can estimate the shift for MuHFS,

δν = −2.6× 10−13E2Hz. (5.14)

It is thus negligible for the current precision of the experiment.

Bloch-Siegert Term

In the section of the theory of the resonance line shape, we neglect one of the two

components of the microwave term, one rotating clockwise and one rotating counter-

clockwise. The neglected term can shift the resonance line center and this term was

first calculated by Bloch and Siegert [89], thus being called the Bloch-Siegert term.

The shift was also derived by Shirley [90]. The 1st order shift expressed in angular

frequency is
b2

ω
(5.15)

where b is the microwave b parameter also used in Chap. 2, ω is the angular frequency

of the transition.

If the microwave b parameter is b = 200 kHz, then the frequency shift caused by

the Bloch-Siegert term δνBS for MuHFS (frequency = 4.463 GHz) is

δνBS =
1

2π

(200 kHz)2

(2π × 4.463 GHz)
= 0.2 Hz (5.16)

and we conclude it is negligible compared to the precision of the current experiment.

As derived in [90], the 2nd order shift is suppressed by a factor of b2/4ω2 = 10−11,

and it is also negligible.
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Off Resonance Term

There is another term which was neglected in the section of resonance line shape

(Sec. 2.4), the off resonance term. The detailed discussion of the effect by neglecting

the term can be found in [91]. The frequency shift δν14 and δν34 by neglecting the

term can be calculated as below,

δν14 =

b14
2π

2 1

ν12 − ν14
− 1

−ν34 − ν14

 (5.17)

δν34 =

b34
2π

2 1

−ν34 − ν23
− 1

−ν34 − ν14

, (5.18)

and if we substitute b = 200 kHz, the shifts δν14 and δν34 amount to -0.1 Hz and

0.1 Hz, respectively. Therefore we can conclude the systematic uncertainty related

to the term is negligible.

Blackbody Radiation

For the cesium atomic clocks using microwave, one of the important systematic

uncertainties is the Stark shift caused by the Blackbody Radiation (BBR). The shift

is discussed both experimentally and theoretically in pieces of literature [92, 93], the

correction is estimated to be the order of 10−14 [94, 95]. Thus we conclude the effect

is negligible for the current case of the MuHFS.

5.2 Result

In conclusion, we developed a new microwave cavity to measure the MuHFS at low

Kr pressure points, i.e., 0.3 atm and 0.4 atm. To obtain the MuHFS frequency in

vacuo, we applied pressure extrapolation. Pressure extrapolation was conducted in

two ways; one is the extrapolation using data sets at J-PARC only and the other

is the extrapolation using the linear term obtained by the precursor experiment in

high field at LAMPF [51]. From the first way of the extrapolation, we obtain,

∆νfit = 4.463 3055(23) GHz, (5.19)

and

a = −(9.3± 1.2)× 10−6 atm−1. (5.20)

The systematic uncertainty in total is 112 Hz. Table 5.1 is the summary of the

systematic uncertainty. The most dominant source of the systematic uncertainty is

the precision of the gauge, which can be ameliorated by using a gauge with better

precision. The second largest uncertainty (Power drift) can be suppressed by the

feedback of the microwave power and water cooling of the cavity. The third largest

term (Frequency reference) will be improved by using GPS as the reference.
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Table 5.1: Summary table of the systematic uncertainty. The figure in a parenthesis

indicates the systematic uncertainty of the combined result of our data set and the

previous measurements at LAMPF [52].

Contribution Uncertainty [Hz]

Pressure Gauge 79(127)

Pressure Fluctuation 24

Quadratic Term 2(0)

Frequency Reference 45

Power Drift 60

Muon Beam 6

Others < 1

Total 112(150)

From the second way of the extrapolation, we obtain

∆νcomb = 4.463 3029(8) GHz. (5.21)

The total systematic uncertainty, in this case, is 150 Hz. The value of the systematic

uncertainty for a pressure gauge in the previous measurement in LAMPF was 100

Hz [52], so we account
√
1002 + 792 = 127 Hz as the systematic uncertainty.

Figure 5.5 shows the summary plot of our results (the red point is for our result

only, the blue point is the combined result of our data and LAMPF data), the

theoretical value (gray band), and the result obtained by precursor experiments at

LAMPF (black points). The point ∆νLF shows the result of the precursor experiment

in very weak field [20], and the point ∆νHF indicates the result of the precursor

experiment in high field [19]. Our results were consistent with theoretical value and

the results of the precursor experiments.
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Figure 5.5: Summary plot of our results. The red point is for our result only, the blue

point is the combined result of our data and LAMPF data. The gray band shows

the theoretical value, and the black points are the result obtained by precursor

experiments at LAMPF. Our results were consistent with theoretical value and the

precursor experiment.
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Conclusion and Outlook

6.1 Conclusion

In conclusion, we measured the MuHFS at Kr pressure points 0.3 atm, 0.4 atm.

Combining the results with the data at 1.0 atm, which was obtained previously by

the MuSEUM group, we extrapolate the results from these data sets to obtain the

MuHFS frequency in vacuo. The obtained value is

∆νfit = 4.463 3055(23) GHz, (6.1)

where the number in the parenthesis is the statistical uncertainty in 1σ and the

systematic uncertainty was estimated to be 112 Hz. As shown in Fig. 5.5, the

result is consistent with the precursor experiments at LAMPF and the theoretical

calculation.

The linear pressure dependence term a of the MuHFS is determined to be

a = −(9.3± 1.2)× 10−6 atm−1. (6.2)

It is consistent with the linear dependence apre obtained by the precursor experiment

in high field at LAMPF [51];

apre = −(8.077± 0.018)× 10−6 atm−1. (6.3)

We also made a combined analysis of our data and LAMPF data, obtaining

∆νcomb = 4.463 3029(8) GHz, (6.4)

which is also consistent with the previous measurements and the theory. We also

obtained linear and quadratic term of the pressure dependence from the combined

data,

a = −(8.2± 0.5)× 10−6 atm−1 (6.5)

and

b = (6.6± 0.9)× 10−9 atm−2. (6.6)

The result of the quadratic term is consistent with the previous measurement [20],

b = (5.7± 1.3)× 10−9 atm−2. (6.7)

122



CHAPTER 6. CONCLUSION AND OUTLOOK

6.2 Outlook

6.2.1 Systematic Uncertainty

Table 5.1 is the summary of the systematic uncertainty. The most dominant source

of the systematic uncertainty is from the precision of the capacitance pressure gauge

(79 Hz). The precision of the gauge is 0.2%. This systematic uncertainty can

be ameliorated by using a gauge with better precision. One of the candidates of

such pressure gauge is RPM4-AD (by Fluke Calibration), which has a precision of

0.2% and it is commercially available. If we use the gauge, the uncertainty will be

suppressed to be 8 Hz.

The second largest uncertainty is power drift (60 Hz). This systematic uncer-

tainty is caused by the drift of the microwave power during the scan of the resonance

line. Typically it took 20 minutes for the measurement at one frequency point. The

fluctuation of the microwave power during the time is 1%. Microwave feedback

can suppress such fluctuation to 0.02%. Also, we can suppress the uncertainty by

reducing the time consumed for the resonance line scan. The future systematic

uncertainty is estimated to be 1 Hz.

The third largest term (Frequency reference, 45 Hz) is from the uncertainty of

the frequency reference in the microwave signal generator. It will be improved by

using the GPS as the reference of the microwave frequency. GPS can suppress

the uncertainty less than 1 Hz. Table 6.1 shows the summary of the prospect of

systematic uncertainty in the future experiment.

Table 6.1: Summary table of the future prospect of the systematic uncertainties.

Contribution Uncertainty [Hz]

Pressure Gauge 8

Pressure Fluctuation 2

Quadratic Term 0

Frequency Reference 1

Power Drift 1

Muon Beam 6

Others < 1

Total 10

6.2.2 Statistical Uncertainty

In this thesis, we used data obtained with the muon intensity 5×106 µ+/s in three

days. Most statistics are gained by the two data set using old muonium method,

obtained in two days. For experiments in the future, a new beamline (H-Line) under
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construction will enhance the available number of the muons per second by a factor

of ten. Also, the proton beam power will be upgraded from 500 kW to 1 MW, so

a factor of 20 improvements in total is expected. The new beamline is a dedicated

facility for the fundamental-physics experiments using muons, and MuSEUM expects

more than 100 days of physics-run with the new beamline. With 100 days of run in

the H-Line, a factor of
√
20× 100/2 = 32 improvement of the statistical uncertainty

is feasible, so the measurement with the statistical uncertainty 800 Hz/31 = 25 Hz

is achievable. Additional studies, such as the improvement of the Signal-to-Noise

ratio, can ameliorate the statistics further.

Figure 6.1 shows the summary of the uncertainties of the precursor experiments

at LAMPF (gray bar) and our result (red), as well as the combined result (blue) and

the prospected result with H-Line (magenta). Note that the uncertainty is statistical

only.

Improvements in the analysis method may contribute to the suppression of the

statistical uncertainty. The averaging of the results obtained from the old muonium

method with narrower time windows (e.g., averaging the result of the old muonium

signals at 2-3 µs, 3-4 µs, 4-5 µs, and 5-6 µs.) is one of the candidates. Another

promising candidate for the analysis method is the time-differential method. The

time-differential method is a method which obtains the resonance frequency by fit-

ting the time-dependent signal (shown in 4.21), without fitting the resonance line

itself. The method is discussed elsewhere in detail [55].

The separated oscillating field (SOF) method (Ramsey interferometry method)

is another promising method for reducing the statistical uncertainty [52, 96], since

it will give a narrower resonance line than the conventional method as well as the

signal height will be doubled. In the method, one applies two separated microwave

field so the cavity filling time τ = Q/ω should be smaller than muon lifetime. In

the case of τ = 100 ns, the Q factor should be lower than 2800, and one must apply

microwave with a higher power. This may cause an additional source of systematic

uncertainty by heating due to the power loss at the surface of the cavity.

6.2.3 High field

This thesis focused on the measurement at a very weak field, but high field measure-

ment will play an important role in the MuSEUM project, especially in terms of the

synergy with muon g-2. The measurement in high field expects a higher statistics

than the measurement in low field, since decay positrons are guided along the beam

axis by the Lorentz force in the magnetic field, which is applied parallel to the beam

axis, and they are more likely to hit the detector.

In high field, we can measure the MuHFS by sweeping the magnetic field strength

as well as by sweeping the microwave frequency. These two different measurement

methods can contribute to the reduction of the systematic uncertainty.
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There is an additional systematic uncertainty source for high field measurement,

one from the applied magnetic field. For the determination of the muon magnetic

moment, the magnetic field becomes the dominant source of systematic uncertainty.

Preparation of a magnetic field with a uniformity of 1 ppm [97] and precise mag-

netometers using Nuclear Magnetic Resonance (NMR) [98] can suppress systematic

uncertainty. Recent measurement using a prototype of NMR magnetometer yield a

precision of 18 ppb [99], which is promising for the measurement of the muon mag-

netic moment with unprecedented precision. The estimated systematic uncertainty

in high field is 2 ppb for HFS and 20 ppb for the muon magnetic moment [97].

Figure 6.1: Statistical uncertainties of the previous and current experiments, in

addition to the future prospect. The gray bars indicate the uncertainty of the

previous experiments at LMAPF. The red and blue bars are the uncertainties of the

result from our data and the combined result, respectively. The magenta bar is the

prospect of the uncertainty in an experiment with H-Line 100-days run (25 Hz).
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Beam Profile Measurement

A.1 Introduction

In this appendix, we discuss the measurement of the muon beam profile or the beam

stopping distribution in the krypton gas target. The prototype of the measurement

system is described elsewhere [100]. The data was used for the validation of the

stopping distribution simulation using GEANT4 [79]. We discuss the measurement

procedure including the apparatus for the profile measurement in Sec. A.2, and the

result in Sec. A.3. The simulation validated here was used in the discussion of the

new cavity in Sec. 3.5.2.

A.2 Measurement Procedure

A.2.1 Setup

Figure A.1: A schematic diagram of the beam profile measurement.

We developed a measurement system, which consists of a profile measurement

chamber, a scintillator, a Charge-Coupled Device (CCD) camera, and ancillary ap-

paratus. Figure A.1 shows the schematic diagram of the beam profile measurement.
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The chamber contains krypton gas and the scintillator, and its scintillation light is

amplified by an image intensifier (IIF) before captured by the CCD camera. From

the image obtained by the CCD camera, we determine the cross-sectional profile

of the muon beam, as well as the light yield. One can move the position of the

scintillator along the muon beam axis (longitudinal axis). After the move, the CCD

captures the image again. We can also determine how many muons are stopped in

the region between the first position of the scintillator and the second position of

the scintillator, by taking the difference of the light yields of the two positions. By

measuring at several positions, we can determine the muon longitudinal stopping

distribution in the gas.

A beam profile chamber made for this measurement (Fig. A.2) has the same

dimension (diameter, longitudinal length) as the chamber for muonium spectroscopy.

The chamber and its foil are also made of aluminum. The chamber surface was

anodized (alumite coating) which prevents the scintillation light from scattering

at the chamber surface, and this suppresses the background photons due to the

scattering.

Inside the profile chamber, there is no microwave cavity, instead, there is a piece

of black paper, which has a similar density (0.0257 g/cm2 compared to the Cu foil’s

0.0223 g/cm2) and thickness as the foil for the cavity. We call it a ”dummy foil”

and Fig. A.3 shows the picture of the dummy foil attached to the upstream flange

of the profile measurement chamber. The black paper was selected as the dummy

foil so that it suppresses the light scattering.

In addition to the dummy foil, we place a disk-shaped scintillator in the chamber.

The scintillator is attached to a screw. An actuator outside the chamber can rotate

the screw, and move the scintillator position. The CCD camera is also moved by

another actuator, in order to keep the distance between the scintillator and the

camera the same so the scintillator is always placed at the focal point of the CCD

camera. The scan range covered by the scintillator is 300 mm.

Figure A.4 shows the chamber and the beam duct. There is a gap between the

flange foil of the chamber and the beam duct. The gap is 11 cm, which is 1 cm

longer than the gap of the spectroscopy chamber and the beam duct, due to the

interference of the support of the chamber and the duct.
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Figure A.2: A chamber for beam profile measurement.
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Figure A.3: Dummy foil for beam profile measurement.
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Figure A.4: The beam profile measurement chamber and the beam duct.
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A.3 Result

Figure A.5: The beam timing scan result.

The measurement was conducted at experimental area D2, the same experimen-

tal area as the spectroscopy measurement. At that time of the profile measurement

(December 2017), the beam operation was so-called single pulse mode, and the beam

power was 300 kW. Note that for the spectroscopy measurement, the beam opera-

tion was double pulse mode, meaning the beam was separated to two pulses. Each

pulse has a 100 ns bunch width, and the two pulses are separated by 600 ns. The

difference in the operational modes does not affect the muon beam profile. We mea-

sured the beam profile at two different conditions, the krypton gas pressure at 1.0

atm and the muon beam momentum 27.4 MeV/c, and the pressure at 0.3 atm and

the momentum 26.0 MeV/c.

In the IIF, there is the gate amplifier for reducing the background photons. The

gate is opened for 100 ns. The gate is triggered by the signal synchronized with

the RF applied on the accelerator. The gate timing is adjustable by varying the
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delay for the signal from the accelerator. Figure A.5 shows the light yield for the

different delay time. There are two peaks at 11300 ns and 11580 ns. The first

peak corresponds to the prompt positron pulse. The second peak is the muon peak.

The time difference is consistent with the estimated time-of-flight from the muon

momentum. From this plot, we decided to adjust the delay to 11580 ns.

We measure the muon beam profile by taking several ”shots” for each scintillator

positions. A ”shot” is an accumulated image of the scintillation light for typically 30

seconds. As mentioned above, the gate is open for 100 ns per one beam pulse, whose

repetition rate is 25 Hz. Therefore one shot is the integral of the light obtained by

the CCD in 100 ns × 25 Hz × 30 sec = 75 µs exposure. Typically, we took 10 shots

per scintillator position.

Figure A.6: Typical cross-sectional beam profile.

Figure A.6 shows the typical beam profile obtained by the CCD camera. The

profile was obtained when the scintillator is placed at the most upstream position.

The background photons are well suppressed by the anodized wall of the cham-

ber and the black dummy foil, so we can clearly see the edge of the disk-shaped

scintillator and the muon beam profile.

Figure A.7 shows the zoomed view of the typical image of the CCD camera.

There is a pixel which has an unreasonably high photon yield (”noisy”), or other

pixels have very low yields compared to the surrounding pixels (dead pixels). These

pixels were omitted from the analysis, and it does not affect the result.
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Figure A.7: An example of the noisy pixel and the dead pixel, indicated by the black

circles.

Figure A.8: Beam profiles from upstream to the downstream.
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Figure A.8 presents the change of the beam profile for different scintillator po-

sitions. There is a steady decrease of the light yield as the scintillator moves to

downstream positions, meaning fewer muons hit the scintillator. The bottom right

profile in the figure shows the image of the beam profile when the scintillator is 100

mm away from the cavity entrance, i.e., the dummy foil. Note that the profile center

looks slightly shifted compared to the upper left figure. The cause of this shift may

be attributed to the background positrons (the positrons are considered to have a

different vertical profile since there is the deflection from the Wien filter described in

Sec. 3.2), or the actual shift of the muon beam profile. Figure A.9 shows the beam

profile of prompt positrons, meaning the obtained profile when the trigger delay was

adjusted to 11300 ns, instead of 11580 ns. The profile of the prompt positrons have

a shifted center in the same direction, but the horizontal projection of the profile

in Fig. A.10 presents the fact that the profile of the positrons (blue line) is further

deviated from the center compared to the profiles of muons (red or yellow lines).

The profile difference suggests that the deviation of the beam profile at 100 mm

position is likely to be caused by the actual shift of the muon beam profile.

Figure A.9: Cross-sectional distribution of the prompt positrons. Due to the vertical

deflection caused by the Wien filter, the vertical center is shifted downward.
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Figure A.10: Comparison of the vertically projected profiles of the positrons and

muons. Red, orange, and yellow lines represent the muon profile, and the blue

represents the profile of the positrons.
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In order to obtain the beam width and center, we fit the beam profile with the

two-dimensional Gaussian. For the fitting, we have to define the error of the light

yield for each pixel of the CCD camera. Figure A.11 shows the correlation between

the light yield of a pixel and the standard deviation of the light yield. The red line

is the fit result using the following equation,

σly = A
√
(Y −B)/G (A.1)

where the σly is the standard deviation of the light yield, A is the scaling parameter,

Y is the light yield, B is the offset or shift parameter, and G is the gain of the IIF.

In the fitting, A, B, and G are the free parameters. In the figure, A is denoted as

”scale”. B is expressed as ”shift”, and G is written as ”gain”. We use the standard

deviation determined from the light yield, based on the equation and the parameters

obtained by this fitting.

Figure A.11: Correlation of the light yield and the standard deviation of the yield
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The fitting of the beam profiles can be done in several ways. We can fit the

two-dimensional profile with a two-dimensional Gaussian, and obtain the (vertical

and horizontal) center and the width. Also, we can first project the 2D profile to

horizontal and vertical axes, and then fit the projected profile with one-dimensional

Gaussian. The latter way is less statistically powerful, but the result is easy to

understand. Also, there are two ways of the fitting; one can fit each shot of the

CCD camera, or fit the accumulated image of the several shots.

Figure A.12 is the horizontal center of the beam profile determined by several

fit results. The horizontal axis is the scintillator position, and the vertical axis

is the horizontal center of the beam profile. Black circle points indicate the result

obtained by 2D-fitting of the accumulated image. Pale-violet square points represent

the results obtained by the one dimensional-fitting (1D-fitting) of each shot. Green

square points are the results of the 1D-fitting of the accumulated image. The points

not shown in the figure were omitted due to the failure of the fit. All the points are

in the very small region (4.6 ±0.6 mm), and we conclude the horizontal center of

the beam profile does not significantly change for different scintillator position.

Figure A.12: Horizontal center of the muon cross-sectional distribution.
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Figure A.13: Vertical center of the muon cross-sectional distribution.

Similarly, the vertical center obtained by the fitting is shown in Fig. A.13. The

horizontal axis is the scintillator position, and the vertical axis is the vertical center

of the beam profile. Orange circle points indicate the result obtained by 2D-fitting

of the accumulated image. Pale-violet square points represent the results obtained

by the 1D-fitting of each shot. Green square points are the results of the 1D-fitting

of the accumulated image. Due to the lack of statistics, the results obtained by

the 1D-fitting of each shot fluctuate. Different fitting methods indicate a similar

tendency; for the downstream scintillator position, the muon beam profile deviates

downward. This tendency is qualitatively explained by the Wien filter. The Wien

filter’s E × B field acts as a particle selector as well as a momentum selector; the

muons are deflected according to the slight difference in its momentum. The higher

the momentum a muon has, the lower position in the vertical axis the muon occupies.

For the downstream position of the scintillator, only more energetic muons arrive

at the scintillator. As the consequence, the beam profile in downstream is shifted

downward.

Figure A.14 shows the vertical and horizontal widths of the beam profile. The

beam width becomes wider as the scintillator moves away from the cavity entrance,

mainly due to the multiple scattering of the muon beam with Kr atoms and beam
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Figure A.14: Vertical and Horizontal widths of the cross-sectional muon distribution

defocusing. At a certain point, the tendency changes and the beam width become

narrower. This is due to the correlation of the beam momentum and the position

of the beam.

Figure A.15 shows the light yield of the scintillator for different positions. There

is less light yield for the scintillators away from the cavity entrance since more

muons are stopped in the Kr gas before hitting the scintillator. Roughly speaking,

we can deduce the muon stopping distribution in the longitudinal axis, by taking

the difference of the light yield for adjacent scintillator positions. One should notice,

however, that to determine the number of the muons stopped in the region between

the two scintillator positions, we should correct the difference of the muon energy

for different scintillator positions.

Figure A.16 presents the average muon energy for different positions, calculated

by GEANT4. We used this result to correct the light yield and then determined the

muon distribution based on the corrected light yield. The figure shows the muon

average energy when Kr pressure is 1 atm.

Figure A.17 shows the longitudinal muon distribution in 1 atm Kr gas, with

beam momentum p=27.4 MeV/c. Most likely the muons stop around 30 mm from

the cavity entrance. Figure A.18 shows the muon distribution in 0.3 atm Kr gas, with

beam momentum p=26.0 MeV/c (indicated as black points). For the comparison,

the distribution in 1.0 atm is also shown (red points). The distribution in 0.3 atm

is broader than the distribution in 1.0 atm.
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Figure A.15: Light yield for different scintillator positions.

140 Sec. A.3



APPENDIX A. BEAM PROFILE MEASUREMENT

Figure A.16: Simulated average muon energy for different scintillator positions.

Figure A.17: Longitudinal muon distribution in 1 atm krypton
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Figure A.18: Comparison of the longitudinal muon distribution in 0.3 atm krypton

(black) and the distribution in 1.0 atm krypton (red). Muon distribution is broader

with lower gas pressure.
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Figure A.19: Comparison of simulated beam distribution and data. Black or red

points are measured value by the beam monitor. Blue plots indicate the simulated

distribution.

Figure A.19 shows the comparison of the obtained data by the beam profile mon-

itor and the result of the simulation using GEANT4. There is a consistency between

the data and the simulation. We used this data as the validation of the GEANT4

simulation, and we modified the geometry of the apparatus for the spectroscopy and

then simulated results shown in Sec. 3.5.2.
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Figure A.20: Initial beam momentum distribution [101]

Figure A.20 presents the initial beam momentum distribution at the end of

the beam duct we used for the simulation in GEANT4. This shape is qualita-

tively explained by the effect of beam line magnets and the muon production; the

momentum acceptance of the magnets shapes the momentum distribution like a

trapezoid-shape, and the number of the surface muons N obeys the momentum p

dependency N ∝ p2.5, so the resulting momentum distribution is a skewed trapezoid

in the figure.
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