Equation of state of hyperonic nuclear matter at zero and finite temperatures with the variational method

H. Togashi (RIKEN)

E. Hiyama (RIKEN), M. Takano (Waseda University)

Outline

1: Introduction
2: Hyperon EOS at zero temperature
3: Hyperon EOS at finite temperature
4: Summary
1. Introduction

Hyperon interactions play an important role in compact astrophysical objects.

Neutron star

Structure is governed by the nuclear equation of state (EOS) at zero temperature.

HYPERON PUZZLE

- EOS becomes softer due to the hyperon mixing.
- Maximum mass of neutron star tends to be lower than the observational data.

The hyperon mixing in neutron stars has been studied with various nuclear theories.

- Relativistic mean field theory (S. Weissenborn et al., PRC 85 (2012) 065802)
- Brueckner-Hatree-Fock theory (H. Schulze, T. Rijken, PRC 84 (2011) 035801)
- Variational many-body theory (H. Togashi et al., accepted in PRC)
Nuclear EOS for core-collapse simulations

Nuclear EOS at finite temperature → Core-collapse supernova (SN)

1. **Lattimer-Swesty EOS**: *The Skyrme-type interaction* (NPA 535 (1991) 331)
2. **Shen EOS**: *The Relativistic Mean Field Theory* (NPA 637 (1998) 435)

<table>
<thead>
<tr>
<th>Nuclear Interaction</th>
<th>n_{sat} (fm$^{-3}$)</th>
<th>BE/A (MeV)</th>
<th>K (MeV)</th>
<th>Q_{int} (MeV)</th>
<th>J (MeV)</th>
<th>L (MeV)</th>
<th>type of int. used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKa</td>
<td>0.155</td>
<td>16.0</td>
<td>263</td>
<td>-300</td>
<td>32.9</td>
<td>74.6</td>
<td>Skyrme, H&W</td>
</tr>
<tr>
<td>LS180</td>
<td>0.155</td>
<td>16.0</td>
<td>180</td>
<td>-451</td>
<td>28.6</td>
<td>73.8</td>
<td>Skyrme, LS180</td>
</tr>
<tr>
<td>LS220</td>
<td>0.155</td>
<td>16.0</td>
<td>220</td>
<td>-411</td>
<td>28.6</td>
<td>73.8</td>
<td>Skyrme, LS220, LS220A, LS220 π</td>
</tr>
<tr>
<td>LS375</td>
<td>0.155</td>
<td>16.0</td>
<td>375</td>
<td>176</td>
<td>28.6</td>
<td>73.8</td>
<td>Skyrme, LS375</td>
</tr>
<tr>
<td>TMA</td>
<td>0.147</td>
<td>16.0</td>
<td>318</td>
<td>-572</td>
<td>30.7</td>
<td>90.1</td>
<td>Skyrme, SH(TMA)</td>
</tr>
<tr>
<td>NL3</td>
<td>0.148</td>
<td>16.2</td>
<td>272</td>
<td>203</td>
<td>37.3</td>
<td>118.2</td>
<td>RMF, HS(NL3)</td>
</tr>
<tr>
<td>FSUgold</td>
<td>0.148</td>
<td>16.3</td>
<td>230</td>
<td>-524</td>
<td>32.6</td>
<td>60.5</td>
<td>RMF, SH(FSU1.7), HS(FSUgold)</td>
</tr>
<tr>
<td>FSUgold2.1</td>
<td>0.148</td>
<td>16.3</td>
<td>230</td>
<td>-524</td>
<td>32.6</td>
<td>60.5</td>
<td>RMF, SH(FSU2.1)</td>
</tr>
<tr>
<td>IUFSU</td>
<td>0.155</td>
<td>16.4</td>
<td>231</td>
<td>-290</td>
<td>31.3</td>
<td>47.2</td>
<td>RMF, HS(IUFSU)</td>
</tr>
<tr>
<td>DD2</td>
<td>0.149</td>
<td>16.0</td>
<td>243</td>
<td>169</td>
<td>31.7</td>
<td>55.0</td>
<td>RMF, HS-DD2, BHBA, BHBA φ</td>
</tr>
<tr>
<td>SFHo</td>
<td>0.158</td>
<td>16.2</td>
<td>245</td>
<td>-468</td>
<td>31.6</td>
<td>47.1</td>
<td>RMF, SFHo</td>
</tr>
<tr>
<td>SFHx</td>
<td>0.160</td>
<td>16.2</td>
<td>239</td>
<td>-457</td>
<td>28.7</td>
<td>23.2</td>
<td>RMF, SFHx</td>
</tr>
<tr>
<td>TM1</td>
<td>0.145</td>
<td>16.3</td>
<td>281</td>
<td>-285</td>
<td>36.9</td>
<td>110.8</td>
<td>RMF</td>
</tr>
</tbody>
</table>

There are no SN EOSs based on the microscopic many-body theory.
SN-EOS based on the microscopic many-body theory

We have constructed the nuclear EOS for core-collapse simulations with the variational method.

Collaboration with M. Takano (Waseda University), K. Sumiyoshi (Numazu College of Tech.), Y. Takehara, S. Yamamuro, K. Nakazato, H. Suzuki (Tokyo Univ. of Science)

Method : Cluster variational method

Potential : AV18 + UIX

Energies of uniform matter

Application to Neutron Star

Application to Supernova simulation

We extend our variational method to consider additional contributions from Λ hyperons.
2. Hyperon EOS at zero temperature

Two-body Hamiltonian

\[H_2 = -\sum_{i} \left[m_i c^2 + \frac{\hbar^2}{2m_i} \nabla_i^2 \right] + \sum_{i<j} V_{ij} \]

Three-body Hamiltonian

\[H_3 = \sum_{i<j<k} V_{ijk} \]

- **NN potential**: AV18 two-nucleon potential (PRC 51 (1995) 38)

- **ΛN and ΛΛ potentials**: Central potentials
 - The \textit{ab initio} variational calculations for Λ hypernuclei reproduce their experimental eigenvalues.

The experimental data of hypernuclei give no information on the odd-state part of the ΛΛ interactions.
We investigate the effects of on the compact astrophysical objects.

The odd-state part of the $\Lambda\Lambda$ interaction

We prepare four different models for the odd-state part of the $\Lambda\Lambda$ interaction.

Type 1: *The most attractive*
Type 2: *Less attractive*
Type 3: *Slightly repulsive*
Type 4: *The most repulsive*

The repulsion strength of Type 4 is comparable to that of the odd-state repulsion of ΛN interaction.

The repulsive effect increases monotonically from Type 1 to Type 4.

- We investigate the effects of the odd-state part of bare $\Lambda\Lambda$ interactions on the compact astrophysical objects.
Energy of hyperonic nuclear matter

Energy per baryon

\[E(n_n, n_p, n_\Lambda) = E_2(n_n, n_p, n_\Lambda) + E_3^N \]

\(E_2 \): The expectation value of \(H_2 \) with the Jastrow wave function in the two-body cluster approximation.

\[\Psi = \text{Sym} \left[\prod_{i<j} f_{ij} \right] \Phi_F \]

\(\Phi_F \): Fermi-gas wave function

\(E_3^N \): Three-nucleon energy

Based on the expectation value of \(H_3 \) with the Fermi-gas wave function

\[E_3^N = \langle \alpha H_3^R + \beta H_3^{2\pi} \rangle_F + E_{\text{corr}} \]

(NPA902 (2013) 53)
Mass-radius relations of neutron stars

Maximum mass of neutron stars

<table>
<thead>
<tr>
<th>Type</th>
<th>Mass (M⊙)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>1.52 M⊙</td>
</tr>
<tr>
<td>Type 2</td>
<td>1.60 M⊙</td>
</tr>
<tr>
<td>Type 3</td>
<td>1.65 M⊙</td>
</tr>
<tr>
<td>Type 4</td>
<td>1.73 M⊙</td>
</tr>
<tr>
<td>without Y</td>
<td>2.22 M⊙</td>
</tr>
</tbody>
</table>

The maximum mass increases. (1.52 M⊙ → 1.73 M⊙)

Application to Neutron Star

J0348+0432: Science 340 (2013) 1233232

Shaded region is the observationally suggested region by Steiner et al. (Astrophys. J. 722 (2010) 33)
3. Hyperon EOS at finite temperature

Free energy F is expressed by the average occupation probabilities.

The average occupation probability

$$f_i(k) = \left\{ 1 + \exp\left[\frac{\varepsilon_i(k) - \mu_{0i}}{k_B T} \right] \right\}^{-1}$$

$\varepsilon_i(k)$: Single particle energy

$$\varepsilon_i(k) = \frac{\hbar^2 k^2}{2m_i^*} \quad (i = p, n, \Lambda)$$

m_i^*: Effective mass of baryons

Free energies are minimized with respect to m_i^*

Free energy of hyperonic nuclear matter (Type 4)
Application to supernova matter

We calculate the onset density of Λ hyperons in hot dense matter with the equilibrium condition $\mu_n = \mu_{\Lambda}$.
4. Summary

We construct the EOS of nuclear matter including Λ hyperons at zero and finite temperatures by the variational method.

- The obtained thermodynamic quantities are reasonable.
- The repulsion in the odd-state $\Lambda\Lambda$ interaction raises the maximum mass of neutron star. ($1.52 \, M_\odot \rightarrow 1.73 \, M_\odot$)
- The onset density of Λ is insensitive to the odd-state $\Lambda\Lambda$ interaction.
- TBF shifts the onset density of Λ to the higher density region at low temperatures.

Future Plans

- Construction of the EOS table for core-collapse simulations
- Taking into account mixing of other hyperons ($\Sigma^-, \Sigma^0, \Sigma^+, \Xi^0, \Xi^-$)
- Employing more sophisticated baryon interactions (e.g. Nijmegen)